Confidential guide on numerology and astrology, based of GG33 Public information

Postgres-MCP
Postgres MCP Server
3 years
Works with Finder
1
Github Watches
0
Github Forks
3
Github Stars
MCP PostgreSQL Demo
A FastMCP server that enables LLMs to connect and interact with PostgreSQL databases. This project demonstrates how to use the Model Context Protocol (MCP) to allow Language Models to query and explore database schemas and tables.
Features
- Schema Exploration: Retrieve metadata about database schemas
- Table Inspection: Get detailed information about table structures
- Database Querying: Execute SQL queries against the database
- YAML Formatting: Results are returned in YAML format for easy consumption by LLMs
Resources
The server exposes the following MCP resources:
-
database://{schema}
- Get information about all tables in a schema -
database://{schema}/tables/{table}
- Get detailed information about a specific table
Tools
-
query_database
- Execute SQL queries against the database (SELECT queries only)
Prompts
The server includes the following predefined prompts:
-
prompt_schema_description
- Ask for a description of a database schema -
prompt_table_description
- Ask for a description of a specific table -
prompt_query_database
- Ask for data from a specific table
Prerequisites
- Python 3.12 or higher
- PostgreSQL database
- UV package manager (recommended)
Installation
-
Clone the repository:
git clone <repository-url> cd mcp-demo
-
Create a virtual environment:
python -m venv .venv source .venv/bin/activate # On Windows: .venv\Scripts\activate
-
Install UV (if not already installed):
pip install uv
-
Install dependencies with UV:
uv sync
-
Configure environment variables:
- Copy
.env.example
to.env
- Update the values according to your PostgreSQL configuration
- Copy
Configuration
The application is configured using environment variables:
Variable | Description | Default |
---|---|---|
APP_NAME | Application name | mcp-demo |
DB_HOST | PostgreSQL host | localhost |
DB_PORT | PostgreSQL port | 5432 |
DB_USER | PostgreSQL username | postgres |
DB_PASSWORD | PostgreSQL password | postgres |
DB_NAME | PostgreSQL database name | postgres |
Usage
-
First, uncomment the run function in
src/main.py
by removing the comment from these lines at the bottom of the file:# if __name__ == "__main__": # print("Starting FastMCP server...") # mcp.run()
-
Start the FastMCP server:
python -m src.main
-
The server will be available for LLMs to connect to and query your PostgreSQL database. With the server running, the MCP can be loaded into client applications for interaction.
Client Configuration
To use this MCP in a client application, add the following configuration to your client's MCP configuration file (e.g., .cursor/mcp.json
):
{
"mcpServers": {
"postgres-mcp-server": {
"command": "/path/to/your/venv/bin/mcp",
"args": ["run", "/path/to/your/postgres-mcp/src/main.py"],
"env": {
"APP_NAME": "mcp-demo",
"DB_HOST": "localhost",
"DB_PORT": "5432",
"DB_USER": "postgres",
"DB_PASSWORD": "postgres",
"DB_NAME": "postgres"
}
}
}
}
Be sure to replace the paths with the actual paths to your virtual environment and project directory, and update the environment variables to match your PostgreSQL configuration.
Development
Install development dependencies with UV:
uv pip install -e ".[dev]"
Development tools included:
- JupyterLab for notebooks
- Pyright for type checking
- Ruff for linting
Docker
To run the application with Docker:
-
Build the Docker image:
docker build -t mcp-demo .
-
Run the container:
docker run --env-file .env.docker -p 8000:8000 mcp-demo
Example Usage
Get Schema Information
from mcp.client import get_client
client = get_client("http://localhost:8000")
schema_info = client.get_resource("database://public")
print(schema_info)
Get Table Details
table_info = client.get_resource("database://public/tables/users")
print(table_info)
Execute a Query
result = client.invoke_tool("query_database", {"query": "SELECT * FROM users LIMIT 10"})
print(result)
License
[Add your license information here]
Contributors
- Ricardo Santos ricardo.santos.diaz@gmail.com
相关推荐
Advanced software engineer GPT that excels through nailing the basics.
I find academic articles and books for research and literature reviews.
Embark on a thrilling diplomatic quest across a galaxy on the brink of war. Navigate complex politics and alien cultures to forge peace and avert catastrophe in this immersive interstellar adventure.
Delivers concise Python code and interprets non-English comments
Découvrez la collection la plus complète et la plus à jour de serveurs MCP sur le marché. Ce référentiel sert de centre centralisé, offrant un vaste catalogue de serveurs MCP open-source et propriétaires, avec des fonctionnalités, des liens de documentation et des contributeurs.
Manipulation basée sur Micropython I2C de l'exposition GPIO de la série MCP, dérivée d'Adafruit_MCP230XX
La communauté du curseur et de la planche à voile, recherchez des règles et des MCP
🔥 1Panel fournit une interface Web intuitive et un serveur MCP pour gérer des sites Web, des fichiers, des conteneurs, des bases de données et des LLM sur un serveur Linux.
L'application tout-en-un desktop et Docker AI avec chiffon intégré, agents AI, constructeur d'agent sans code, compatibilité MCP, etc.
Serveurs AWS MCP - Serveurs MCP spécialisés qui apportent les meilleures pratiques AWS directement à votre flux de travail de développement
Reviews

user_FkBUZw7v
As a loyal mcp application user, I highly recommend postgres-mcp! This tool by Tibiritabara is a game-changer for database management and automation. It's user-friendly, robust, and integrates seamlessly into my workflow. Check it out on GitHub: https://github.com/Tibiritabara/postgres-mcp.