Cover image
Try Now
2025-04-09

TypeScript Model Context Protocol (MCP) server boilerplate providing IP lookup tools/resources. Includes CLI support and extensible structure for connecting AI systems (LLMs) to external data sources like ip-api.com. Ideal template for creating new MCP integrations via Node.js.

3 years

Works with Finder

1

Github Watches

2

Github Forks

10

Github Stars

Boilerplate MCP Server

This project serves as a foundation for developing custom Model Context Protocol (MCP) servers that connect AI assistants to external data sources or APIs. It provides a complete architecture pattern, a working example tool, and development infrastructure ready for extension.


Overview

What is MCP?

Model Context Protocol (MCP) is an open standard that allows AI systems to securely and contextually connect with external tools and data sources.

This boilerplate implements the MCP specification with a clean, layered architecture that can be extended to build custom MCP servers for any API or data source.

Why Use This Boilerplate?

  • Production-Ready Architecture: Follows the same pattern used in published MCP servers, with clear separation between CLI, tools, controllers, and services.

  • Type Safety: Built with TypeScript for improved developer experience, code quality, and maintainability.

  • Working Example: Includes a fully implemented IP lookup tool demonstrating the complete pattern from CLI to API integration.

  • Testing Framework: Comes with testing infrastructure for both unit and CLI integration tests, including coverage reporting.

  • Development Tooling: Includes ESLint, Prettier, TypeScript, and other quality tools preconfigured for MCP server development.


Getting Started

Prerequisites

  • Node.js (>=18.x): Download
  • Git: For version control

Step 1: Clone and Install

# Clone the repository
git clone https://github.com/aashari/boilerplate-mcp-server.git
cd boilerplate-mcp-server

# Install dependencies
npm install

Step 2: Run Development Server

Start the server in development mode:

npm run dev:server

This starts the MCP server with hot-reloading and enables the MCP Inspector at http://localhost:5173.


Step 3: Test the Example Tool

Run the example IP lookup tool from the CLI:

# Using CLI in development mode
npm run dev:cli -- get-ip-details

# Or with a specific IP
npm run dev:cli -- get-ip-details 8.8.8.8

Architecture

This boilerplate follows a clean, layered architecture pattern that separates concerns and promotes maintainability.

Project Structure

src/
├── cli/              # Command-line interfaces
├── controllers/      # Business logic
├── services/         # External API interactions
├── tools/            # MCP tool definitions
├── types/            # Type definitions
├── utils/            # Shared utilities
└── index.ts          # Entry point

Layers and Responsibilities

CLI Layer (src/cli/*.cli.ts)

  • Purpose: Define command-line interfaces that parse arguments and call controllers
  • Naming: Files should be named <feature>.cli.ts
  • Testing: CLI integration tests in <feature>.cli.test.ts

Tools Layer (src/tools/*.tool.ts)

  • Purpose: Define MCP tools with schemas and descriptions for AI assistants
  • Naming: Files should be named <feature>.tool.ts with types in <feature>.types.ts
  • Pattern: Each tool should use zod for argument validation

Controllers Layer (src/controllers/*.controller.ts)

  • Purpose: Implement business logic, handle errors, and format responses
  • Naming: Files should be named <feature>.controller.ts
  • Pattern: Should return standardized ControllerResponse objects

Services Layer (src/services/*.service.ts)

  • Purpose: Interact with external APIs or data sources
  • Naming: Files should be named <feature>.service.ts
  • Pattern: Pure API interactions with minimal logic

Utils Layer (src/utils/*.util.ts)

  • Purpose: Provide shared functionality across the application
  • Key Utils:
    • logger.util.ts: Structured logging
    • error.util.ts: Error handling and standardization
    • formatter.util.ts: Markdown formatting helpers

Development Guide

Development Scripts

# Start server in development mode (hot-reload & inspector)
npm run dev:server

# Run CLI in development mode
npm run dev:cli -- [command] [args]

# Build the project
npm run build

# Start server in production mode
npm run start:server

# Run CLI in production mode
npm run start:cli -- [command] [args]

Testing

# Run all tests
npm test

# Run specific tests
npm test -- src/path/to/test.ts

# Generate test coverage report
npm run test:coverage

Code Quality

# Lint code
npm run lint

# Format code with Prettier
npm run format

# Check types
npm run typecheck

Building Custom Tools

Follow these steps to add your own tools to the server:

1. Define Service Layer

Create a new service in src/services/ to interact with your external API:

// src/services/example.service.ts
import { Logger } from '../utils/logger.util.js';

const logger = Logger.forContext('services/example.service.ts');

export async function getData(param: string): Promise<any> {
	logger.debug('Getting data', { param });
	// API interaction code here
	return { result: 'example data' };
}

2. Create Controller

Add a controller in src/controllers/ to handle business logic:

// src/controllers/example.controller.ts
import { Logger } from '../utils/logger.util.js';
import * as exampleService from '../services/example.service.js';
import { formatMarkdown } from '../utils/formatter.util.js';
import { handleControllerError } from '../utils/error-handler.util.js';
import { ControllerResponse } from '../types/common.types.js';

const logger = Logger.forContext('controllers/example.controller.ts');

export interface GetDataOptions {
	param?: string;
}

export async function getData(
	options: GetDataOptions = {},
): Promise<ControllerResponse> {
	try {
		logger.debug('Getting data with options', options);

		const data = await exampleService.getData(options.param || 'default');

		const content = formatMarkdown(data);

		return { content };
	} catch (error) {
		throw handleControllerError(error, {
			entityType: 'ExampleData',
			operation: 'getData',
			source: 'controllers/example.controller.ts',
		});
	}
}

3. Implement MCP Tool

Create a tool definition in src/tools/:

// src/tools/example.tool.ts
import { McpServer } from '@modelcontextprotocol/sdk/server/mcp.js';
import { z } from 'zod';
import { Logger } from '../utils/logger.util.js';
import { formatErrorForMcpTool } from '../utils/error.util.js';
import * as exampleController from '../controllers/example.controller.js';

const logger = Logger.forContext('tools/example.tool.ts');

const GetDataArgs = z.object({
	param: z.string().optional().describe('Optional parameter'),
});

type GetDataArgsType = z.infer<typeof GetDataArgs>;

async function handleGetData(args: GetDataArgsType) {
	try {
		logger.debug('Tool get_data called', args);

		const result = await exampleController.getData({
			param: args.param,
		});

		return {
			content: [{ type: 'text' as const, text: result.content }],
		};
	} catch (error) {
		logger.error('Tool get_data failed', error);
		return formatErrorForMcpTool(error);
	}
}

export function register(server: McpServer) {
	server.tool(
		'get_data',
		`PURPOSE: Get data from the example API.
     RETURNS: Markdown with formatted data.
     EXAMPLES: { "param": "value" }`,
		GetDataArgs.shape,
		handleGetData,
	);
}

4. Add CLI Support

Create a CLI command in src/cli/:

// src/cli/example.cli.ts
import { program } from 'commander';
import { Logger } from '../utils/logger.util.js';
import * as exampleController from '../controllers/example.controller.js';
import { handleCliError } from '../utils/error-handler.util.js';

const logger = Logger.forContext('cli/example.cli.ts');

program
	.command('get-data')
	.description('Get example data')
	.option('--param <value>', 'Optional parameter')
	.action(async (options) => {
		try {
			logger.debug('CLI get-data called', options);

			const result = await exampleController.getData({
				param: options.param,
			});

			console.log(result.content);
		} catch (error) {
			handleCliError(error);
		}
	});

5. Register Components

Update the entry points to register your new components:

// In src/cli/index.ts
import '../cli/example.cli.js';

// In src/index.ts (for the tool)
import exampleTool from './tools/example.tool.js';
// Then in registerTools function:
exampleTool.register(server);

Debugging Tools

MCP Inspector

Access the visual MCP Inspector to test your tools and view request/response details:

  1. Run npm run dev:server
  2. Open http://localhost:5173 in your browser
  3. Test your tools and view logs directly in the UI

Server Logs

Enable debug logs for development:

# Set environment variable
DEBUG=true npm run dev:server

# Or configure in ~/.mcp/configs.json

Publishing Your MCP Server

When ready to publish your custom MCP server:

  1. Update package.json with your details
  2. Update README.md with your tool documentation
  3. Build the project: npm run build
  4. Test the production build: npm run start:server
  5. Publish to npm: npm publish

License

ISC License

相关推荐

  • NiKole Maxwell
  • I craft unique cereal names, stories, and ridiculously cute Cereal Baby images.

  • Bora Yalcin
  • Evaluator for marketplace product descriptions, checks for relevancy and keyword stuffing.

  • Joshua Armstrong
  • Confidential guide on numerology and astrology, based of GG33 Public information

  • https://suefel.com
  • Latest advice and best practices for custom GPT development.

  • Callycode Limited
  • A geek-themed horoscope generator blending Bitcoin prices, tech jargon, and astrological whimsy.

  • Emmet Halm
  • Converts Figma frames into front-end code for various mobile frameworks.

  • Khalid kalib
  • Write professional emails

  • Elijah Ng Shi Yi
  • Advanced software engineer GPT that excels through nailing the basics.

  • https://maiplestudio.com
  • Find Exhibitors, Speakers and more

  • Beniyam Berhanu
  • Therapist adept at identifying core issues and offering practical advice with images.

  • apappascs
  • Discover the most comprehensive and up-to-date collection of MCP servers in the market. This repository serves as a centralized hub, offering an extensive catalog of open-source and proprietary MCP servers, complete with features, documentation links, and contributors.

  • ShrimpingIt
  • Micropython I2C-based manipulation of the MCP series GPIO expander, derived from Adafruit_MCP230xx

  • OffchainLabs
  • Go implementation of Ethereum proof of stake

  • huahuayu
  • A unified API gateway for integrating multiple etherscan-like blockchain explorer APIs with Model Context Protocol (MCP) support for AI assistants.

  • deemkeen
  • control your mbot2 with a power combo: mqtt+mcp+llm

    Reviews

    4 (1)
    Avatar
    user_hoL3mxp0
    2025-04-16

    Just Prompt by Disler is a fantastic lightweight MCP server for LLM providers. It offers seamless integration, stable performance, and a user-friendly experience. The server setup is straightforward, making it an excellent choice for both novice and experienced developers. Highly recommend checking it out at https://mcp.so/server/just-prompt/disler for a reliable MCP solution.