MCP cover image
See in Github
2025-04-03

6

Github Watches

33

Github Forks

156

Github Stars

ClickHouse MCP Server

PyPI - Version

An MCP server for ClickHouse.

mcp-clickhouse MCP server

Features

Tools

  • run_select_query

    • Execute SQL queries on your ClickHouse cluster.
    • Input: sql (string): The SQL query to execute.
    • All ClickHouse queries are run with readonly = 1 to ensure they are safe.
  • list_databases

    • List all databases on your ClickHouse cluster.
  • list_tables

    • List all tables in a database.
    • Input: database (string): The name of the database.

Configuration

  1. Open the Claude Desktop configuration file located at:

    • On macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
    • On Windows: %APPDATA%/Claude/claude_desktop_config.json
  2. Add the following:

{
  "mcpServers": {
    "mcp-clickhouse": {
      "command": "uv",
      "args": [
        "run",
        "--with",
        "mcp-clickhouse",
        "--python",
        "3.13",
        "mcp-clickhouse"
      ],
      "env": {
        "CLICKHOUSE_HOST": "<clickhouse-host>",
        "CLICKHOUSE_PORT": "<clickhouse-port>",
        "CLICKHOUSE_USER": "<clickhouse-user>",
        "CLICKHOUSE_PASSWORD": "<clickhouse-password>",
        "CLICKHOUSE_SECURE": "true",
        "CLICKHOUSE_VERIFY": "true",
        "CLICKHOUSE_CONNECT_TIMEOUT": "30",
        "CLICKHOUSE_SEND_RECEIVE_TIMEOUT": "30"
      }
    }
  }
}

Update the environment variables to point to your own ClickHouse service.

Or, if you'd like to try it out with the ClickHouse SQL Playground, you can use the following config:

{
  "mcpServers": {
    "mcp-clickhouse": {
      "command": "uv",
      "args": [
        "run",
        "--with",
        "mcp-clickhouse",
        "--python",
        "3.13",
        "mcp-clickhouse"
      ],
      "env": {
        "CLICKHOUSE_HOST": "sql-clickhouse.clickhouse.com",
        "CLICKHOUSE_PORT": "8443",
        "CLICKHOUSE_USER": "demo",
        "CLICKHOUSE_PASSWORD": "",
        "CLICKHOUSE_SECURE": "true",
        "CLICKHOUSE_VERIFY": "true",
        "CLICKHOUSE_CONNECT_TIMEOUT": "30",
        "CLICKHOUSE_SEND_RECEIVE_TIMEOUT": "30"
      }
    }
  }
}
  1. Locate the command entry for uv and replace it with the absolute path to the uv executable. This ensures that the correct version of uv is used when starting the server. On a mac, you can find this path using which uv.

  2. Restart Claude Desktop to apply the changes.

Development

  1. In test-services directory run docker compose up -d to start the ClickHouse cluster.

  2. Add the following variables to a .env file in the root of the repository.

CLICKHOUSE_HOST=localhost
CLICKHOUSE_PORT=8123
CLICKHOUSE_USER=default
CLICKHOUSE_PASSWORD=clickhouse
  1. Run uv sync to install the dependencies. To install uv follow the instructions here. Then do source .venv/bin/activate.

  2. For easy testing, you can run mcp dev mcp_clickhouse/mcp_server.py to start the MCP server.

Environment Variables

The following environment variables are used to configure the ClickHouse connection:

Required Variables

  • CLICKHOUSE_HOST: The hostname of your ClickHouse server
  • CLICKHOUSE_USER: The username for authentication
  • CLICKHOUSE_PASSWORD: The password for authentication

Optional Variables

  • CLICKHOUSE_PORT: The port number of your ClickHouse server
    • Default: 8443 if HTTPS is enabled, 8123 if disabled
    • Usually doesn't need to be set unless using a non-standard port
  • CLICKHOUSE_SECURE: Enable/disable HTTPS connection
    • Default: "true"
    • Set to "false" for non-secure connections
  • CLICKHOUSE_VERIFY: Enable/disable SSL certificate verification
    • Default: "true"
    • Set to "false" to disable certificate verification (not recommended for production)
  • CLICKHOUSE_CONNECT_TIMEOUT: Connection timeout in seconds
    • Default: "30"
    • Increase this value if you experience connection timeouts
  • CLICKHOUSE_SEND_RECEIVE_TIMEOUT: Send/receive timeout in seconds
    • Default: "300"
    • Increase this value for long-running queries
  • CLICKHOUSE_DATABASE: Default database to use
    • Default: None (uses server default)
    • Set this to automatically connect to a specific database

Example Configurations

For local development with Docker:

# Required variables
CLICKHOUSE_HOST=localhost
CLICKHOUSE_USER=default
CLICKHOUSE_PASSWORD=clickhouse

# Optional: Override defaults for local development
CLICKHOUSE_SECURE=false  # Uses port 8123 automatically
CLICKHOUSE_VERIFY=false

For ClickHouse Cloud:

# Required variables
CLICKHOUSE_HOST=your-instance.clickhouse.cloud
CLICKHOUSE_USER=default
CLICKHOUSE_PASSWORD=your-password

# Optional: These use secure defaults
# CLICKHOUSE_SECURE=true  # Uses port 8443 automatically
# CLICKHOUSE_DATABASE=your_database

For ClickHouse SQL Playground:

CLICKHOUSE_HOST=sql-clickhouse.clickhouse.com
CLICKHOUSE_USER=demo
CLICKHOUSE_PASSWORD=
# Uses secure defaults (HTTPS on port 8443)

You can set these variables in your environment, in a .env file, or in the Claude Desktop configuration:

{
  "mcpServers": {
    "mcp-clickhouse": {
      "command": "uv",
      "args": [
        "run",
        "--with",
        "mcp-clickhouse",
        "--python",
        "3.13",
        "mcp-clickhouse"
      ],
      "env": {
        "CLICKHOUSE_HOST": "<clickhouse-host>",
        "CLICKHOUSE_USER": "<clickhouse-user>",
        "CLICKHOUSE_PASSWORD": "<clickhouse-password>",
        "CLICKHOUSE_DATABASE": "<optional-database>"
      }
    }
  }
}

YouTube Overview

YouTube

相关推荐

  • https://maiplestudio.com
  • Find Exhibitors, Speakers and more

  • Joshua Armstrong
  • Confidential guide on numerology and astrology, based of GG33 Public information

  • Contraband Interactive
  • Emulating Dr. Jordan B. Peterson's style in providing life advice and insights.

  • rustassistant.com
  • Your go-to expert in the Rust ecosystem, specializing in precise code interpretation, up-to-date crate version checking, and in-depth source code analysis. I offer accurate, context-aware insights for all your Rust programming questions.

  • Elijah Ng Shi Yi
  • Advanced software engineer GPT that excels through nailing the basics.

  • Emmet Halm
  • Converts Figma frames into front-end code for various mobile frameworks.

  • lumpenspace
  • Take an adjectivised noun, and create images making it progressively more adjective!

  • https://zenepic.net
  • Embark on a thrilling diplomatic quest across a galaxy on the brink of war. Navigate complex politics and alien cultures to forge peace and avert catastrophe in this immersive interstellar adventure.

  • https://reddgr.com
  • Delivers concise Python code and interprets non-English comments

  • Mintplex-Labs
  • L'application tout-en-un desktop et Docker AI avec chiffon intégré, agents AI, constructeur d'agent sans code, compatibilité MCP, etc.

  • n8n-io
  • Plateforme d'automatisation de workflow à code équitable avec des capacités d'IA natives. Combinez le bâtiment visuel avec du code personnalisé, de l'auto-hôte ou du cloud, 400+ intégrations.

  • ravitemer
  • Un puissant plugin Neovim pour gérer les serveurs MCP (Protocole de contexte modèle)

  • WangRongsheng
  • 🧑‍🚀 全世界最好的 LLM 资料总结 (数据处理、模型训练、模型部署、 O1 模型、 MCP 、小语言模型、视觉语言模型) | Résumé des meilleures ressources LLM du monde.

  • jae-jae
  • MCP Server pour récupérer le contenu de la page Web à l'aide du navigateur sans tête du dramwright.

  • patruff
  • Pont entre les serveurs Olllama et MCP, permettant aux LLM locaux d'utiliser des outils de protocole de contexte de modèle

  • pontusab
  • La communauté du curseur et de la planche à voile, recherchez des règles et des MCP

  • metorial
  • Versions conteneurisées de centaines de serveurs MCP 📡 🧠 🧠

  • langgenius
  • av
  • Exécutez sans effort LLM Backends, API, Frontends et Services avec une seule commande.

    Reviews

    4 (1)
    Avatar
    user_I5zEILdx
    2025-04-17

    As a dedicated user of mcp-clickhouse, I am thoroughly impressed with its seamless integration and robustness. The performance enhancements and scalability options make it an essential tool for managing large datasets efficiently. ClickHouse has done an exceptional job with this application, and I highly recommend it to anyone working with high-volume data processing.