Advanced software engineer GPT that excels through nailing the basics.

puente de Ollama-MCP
Puente entre los servidores Ollama y MCP, lo que permite a LLM locales utilizar herramientas de protocolo de contexto del modelo
3 years
Works with Finder
7
Github Watches
66
Github Forks
552
Github Stars
MCP-LLM Bridge
A TypeScript implementation that connects local LLMs (via Ollama) to Model Context Protocol (MCP) servers. This bridge allows open-source models to use the same tools and capabilities as Claude, enabling powerful local AI assistants.
Overview
This project bridges local Large Language Models with MCP servers that provide various capabilities like:
- Filesystem operations
- Brave web search
- GitHub interactions
- Google Drive & Gmail integration
- Memory/storage
- Image generation with Flux
The bridge translates between the LLM's outputs and the MCP's JSON-RPC protocol, allowing any Ollama-compatible model to use these tools just like Claude does.
Current Setup
- LLM: Using Qwen 2.5 7B (qwen2.5-coder:7b-instruct) through Ollama
-
MCPs:
- Filesystem operations (
@modelcontextprotocol/server-filesystem
) - Brave Search (
@modelcontextprotocol/server-brave-search
) - GitHub (
@modelcontextprotocol/server-github
) - Memory (
@modelcontextprotocol/server-memory
) - Flux image generation (
@patruff/server-flux
) - Gmail & Drive (
@patruff/server-gmail-drive
)
- Filesystem operations (
Architecture
- Bridge: Core component that manages tool registration and execution
- LLM Client: Handles Ollama interactions and formats tool calls
- MCP Client: Manages MCP server connections and JSON-RPC communication
- Tool Router: Routes requests to appropriate MCP based on tool type
Key Features
- Multi-MCP support with dynamic tool routing
- Structured output validation for tool calls
- Automatic tool detection from user prompts
- Robust process management for Ollama
- Detailed logging and error handling
Setup
- Install Ollama and required model:
ollama pull qwen2.5-coder:7b-instruct
- Install MCP servers:
npm install -g @modelcontextprotocol/server-filesystem
npm install -g @modelcontextprotocol/server-brave-search
npm install -g @modelcontextprotocol/server-github
npm install -g @modelcontextprotocol/server-memory
npm install -g @patruff/server-flux
npm install -g @patruff/server-gmail-drive
- Configure credentials:
- Set
BRAVE_API_KEY
for Brave Search - Set
GITHUB_PERSONAL_ACCESS_TOKEN
for GitHub - Set
REPLICATE_API_TOKEN
for Flux - Run Gmail/Drive MCP auth:
node path/to/gmail-drive/index.js auth
- For example node C:\Users\patru\AppData\Roaming\npm\node_modules@patruff\server-gmail-drive\dist\index.js auth
- Set
Configuration
The bridge is configured through bridge_config.json
:
- MCP server definitions
- LLM settings (model, temperature, etc.)
- Tool permissions and paths
Example:
{
"mcpServers": {
"filesystem": {
"command": "node",
"args": ["path/to/server-filesystem/dist/index.js"],
"allowedDirectory": "workspace/path"
},
// ... other MCP configurations
},
"llm": {
"model": "qwen2.5-coder:7b-instruct",
"baseUrl": "http://localhost:11434"
}
}
Usage
- Start the bridge:
npm run start
- Available commands:
-
list-tools
: Show available tools - Regular text: Send prompts to the LLM
-
quit
: Exit the program
-
Example interactions:
> Search the web for "latest TypeScript features"
[Uses Brave Search MCP to find results]
> Create a new folder called "project-docs"
[Uses Filesystem MCP to create directory]
> Send an email to user@example.com
[Uses Gmail MCP to compose and send email]
Technical Details
Tool Detection
The bridge includes smart tool detection based on user input:
- Email operations: Detected by email addresses and keywords
- Drive operations: Detected by file/folder keywords
- Search operations: Contextually routed to appropriate search tool
Response Processing
Responses are processed through multiple stages:
- LLM generates structured tool calls
- Bridge validates and routes to appropriate MCP
- MCP executes operation and returns result
- Bridge formats response for user
Extended Capabilities
This bridge effectively brings Claude's tool capabilities to local models:
- Filesystem manipulation
- Web search and research
- Email and document management
- Code and GitHub interactions
- Image generation
- Persistent memory
All while running completely locally with open-source models.
Future Improvements
- Add support for more MCPs
- Implement parallel tool execution
- Add streaming responses
- Enhance error recovery
- Add conversation memory
- Support more Ollama models
Related Projects
This bridge integrates with the broader Claude ecosystem:
- Model Context Protocol (MCP)
- Claude Desktop Configuration
- Ollama Project
- Various MCP server implementations
The result is a powerful local AI assistant that can match many of Claude's capabilities while running entirely on your own hardware.
相关推荐
Embark on a thrilling diplomatic quest across a galaxy on the brink of war. Navigate complex politics and alien cultures to forge peace and avert catastrophe in this immersive interstellar adventure.
OrchestratorofexpertagentsincybersecurityandOSINT
🔥 1Panel proporciona una interfaz web intuitiva y un servidor MCP para administrar sitios web, archivos, contenedores, bases de datos y LLM en un servidor de Linux.
La aplicación AI de escritorio todo en uno y Docker con trapo incorporado, agentes de IA, creador de agentes sin código, compatibilidad de MCP y más.
Servidores AWS MCP: servidores MCP especializados que traen las mejores prácticas de AWS directamente a su flujo de trabajo de desarrollo
🧑🚀 全世界最好的 llM 资料总结(数据处理、模型训练、模型部署、 O1 模型、 MCP 、小语言模型、视觉语言模型) | Resumen de los mejores recursos del mundo.
Servidores MCP impresionantes: una lista curada de servidores de protocolo de contexto del modelo
Servidor MCP para proporcionar información de diseño de figma a agentes de codificación de IA como Cursor
Traducción de papel científico en PDF con formatos preservados - 基于 Ai 完整保留排版的 PDF 文档全文双语翻译 , 支持 支持 支持 支持 支持 支持 支持 支持 支持 支持 支持 支持 等服务 等服务 等服务 提供 提供 提供 提供 提供 提供 提供 提供 提供 提供 提供 提供 cli/mcp/docker/zotero
Reviews

user_phpNs2Tb
I have been using ollama-mcp-bridge and it has significantly improved my workflow with the MCP application. The seamless integration and user-friendly interface provided by patruff are top-notch. The documentation on the GitHub page is thorough, making setup a breeze. Highly recommend this bridge for anyone looking to enhance their MCP experience.