🧑🚀 全世界最好的LLM资料总结(Agent框架、辅助编程、数据处理、模型训练、模型推理、o1 模型、MCP、小语言模型、视觉语言模型) | Summary of the world's best LLM resources.

MalwareBazaar_MCP
An AI-driven MCP server that autonomously interfaces with Malware Bazaar, delivering real-time threat intel and sample metadata for authorized cybersecurity research workflows.
2
Github Watches
1
Github Forks
2
Github Stars
MalwareBazaar_MCP
An AI-driven MCP server that autonomously interfaces with Malware Bazaar, delivering real-time threat intel and sample metadata for authorized cybersecurity research workflows.
MCP Tools
get_recent
: Get up to 10 most recent samples from MalwareBazaar.
get_info
: Get detailed metadata about a specific malware sample.
get_file
: Download a malware sample from MalwareBazaar.
get_taginfo
: Get malware samples associated with a specific tag.
Step 1: Create a MalwareBazaar APIKEY
Step 2: Create .env
MALWAREBAZAAR_API_KEY=<APIKEY>
Step 3a: Create Virtual Env & Install Requirements - MAC/Linux
curl -LsSf https://astral.sh/uv/install.sh | sh
cd MalwareBazaar_MCP
uv init .
uv venv
source .venv/bin/activate
uv pip install -r requirements.txt
Step 3b: Create Virtual Env & Install Requirements - Windows
powershell -ExecutionPolicy ByPass -c "irm https://astral.sh/uv/install.ps1 | iex"
cd MalwareBazaar_MCP
uv init .
uv venv
.venv\Scripts\activate
uv pip install -r requirements.txt
Step 4a: Add Config to the MCP Client - MAC/Linux
{
"mcpServers": {
"malwarebazaar": {
"description": "Malware Bazaar MCP Server",
"command": "/Users/XXX/.local/bin/uv",
"args": [
"--directory",
"/Users/XXX/Documents/MalwareBazaar_MCP",
"run",
"malwarebazaar_mcp.py"
]
}
}
}
Step 4b: Add Config to the MCP Client - Windows
{
"mcpServers": {
"malwarebazaar": {
"description": "Malware Bazaar MCP Server",
"command": "uv",
"args": [
"--directory",
"C:\Users\XXX\Document\MalwareBazaar_MCP",
"run",
"malwarebazaar_mcp.py"
]
}
}
}
Step 5: Run MCP Server
uv run malwarebazaar_mcp.py
Step 6: Run MCP Client & Query
Help me understnad the latest hash from Malware Bazaar.
Step 7: Run Tests
python -m unittest discover -s tests
uv pip install coverage==7.8.0
coverage run --branch -m unittest discover -s tests
coverage report -m
coverage html
open htmlcov/index.html # MAC
xdg-open htmlcov/index.html # Linux
start htmlcov\index.html # Windows
coverage erase
License
相关推荐
Dify is an open-source LLM app development platform. Dify's intuitive interface combines AI workflow, RAG pipeline, agent capabilities, model management, observability features and more, letting you quickly go from prototype to production.
an easy-to-use dynamic service discovery, configuration and service management platform for building AI cloud native applications.
🔥 1Panel provides an intuitive web interface and MCP Server to manage websites, files, containers, databases, and LLMs on a Linux server.
⛓️RuleGo is a lightweight, high-performance, embedded, next-generation component orchestration rule engine framework for Go.
AI's query engine - Platform for building AI that can answer questions over large scale federated data. - The only MCP Server you'll ever need
🧑🚀 全世界最好的LLM资料总结(视频生成、Agent、辅助编程、数据处理、模型训练、模型推理、o1 模型、MCP、小语言模型、视觉语言模型) | Summary of the world's best LLM resources.
FastGPT is a knowledge-based platform built on the LLMs, offers a comprehensive suite of out-of-the-box capabilities such as data processing, RAG retrieval, and visual AI workflow orchestration, letting you easily develop and deploy complex question-answering systems without the need for extensive setup or configuration.