MCP cover image
See in Github
2025-04-14

An AI-driven MCP server that autonomously interfaces with Malware Bazaar, delivering real-time threat intel and sample metadata for authorized cybersecurity research workflows.

2

Github Watches

1

Github Forks

2

Github Stars

MalwareBazaar_MCP

An AI-driven MCP server that autonomously interfaces with Malware Bazaar, delivering real-time threat intel and sample metadata for authorized cybersecurity research workflows.


MCP Tools

get_recent: Get up to 10 most recent samples from MalwareBazaar.

get_info: Get detailed metadata about a specific malware sample.

get_file: Download a malware sample from MalwareBazaar.

get_taginfo: Get malware samples associated with a specific tag.


Step 1: Create a MalwareBazaar APIKEY

https://auth.abuse.ch/user/me

Step 2: Create .env

MALWAREBAZAAR_API_KEY=<APIKEY>

Step 3a: Create Virtual Env & Install Requirements - MAC/Linux

curl -LsSf https://astral.sh/uv/install.sh | sh
cd MalwareBazaar_MCP
uv init .
uv venv
source .venv/bin/activate
uv pip install -r requirements.txt

Step 3b: Create Virtual Env & Install Requirements - Windows

powershell -ExecutionPolicy ByPass -c "irm https://astral.sh/uv/install.ps1 | iex"
cd MalwareBazaar_MCP
uv init .
uv venv
.venv\Scripts\activate
uv pip install -r requirements.txt

Step 4a: Add Config to the MCP Client - MAC/Linux

{
    "mcpServers": {
        "malwarebazaar": {
            "description": "Malware Bazaar MCP Server",
            "command": "/Users/XXX/.local/bin/uv",
            "args": [
                "--directory",
                "/Users/XXX/Documents/MalwareBazaar_MCP",
                "run",
                "malwarebazaar_mcp.py"
            ]
        }
    }
}

Step 4b: Add Config to the MCP Client - Windows

{
    "mcpServers": {
        "malwarebazaar": {
            "description": "Malware Bazaar MCP Server",
            "command": "uv",
            "args": [
                "--directory",
                "C:\Users\XXX\Document\MalwareBazaar_MCP",
                "run",
                "malwarebazaar_mcp.py"
            ]
        }
    }
}

Step 5: Run MCP Server

uv run malwarebazaar_mcp.py

Step 6: Run MCP Client & Query

Help me understnad the latest hash from Malware Bazaar.

Step 7: Run Tests

python -m unittest discover -s tests

uv pip install coverage==7.8.0
coverage run --branch -m unittest discover -s tests
coverage report -m
coverage html
open htmlcov/index.html  # MAC
xdg-open htmlcov/index.html  # Linux
start htmlcov\index.html  # Windows
coverage erase

License

Apache License, Version 2.0

相关推荐

  • WangRongsheng
  • 🧑‍🚀 全世界最好的LLM资料总结(Agent框架、辅助编程、数据处理、模型训练、模型推理、o1 模型、MCP、小语言模型、视觉语言模型) | Summary of the world's best LLM resources.

  • langgenius
  • Dify is an open-source LLM app development platform. Dify's intuitive interface combines AI workflow, RAG pipeline, agent capabilities, model management, observability features and more, letting you quickly go from prototype to production.

  • av
  • Effortlessly run LLM backends, APIs, frontends, and services with one command.

  • alibaba
  • an easy-to-use dynamic service discovery, configuration and service management platform for building AI cloud native applications.

  • 1Panel-dev
  • 🔥 1Panel provides an intuitive web interface and MCP Server to manage websites, files, containers, databases, and LLMs on a Linux server.

  • microsoft
  • Python tool for converting files and office documents to Markdown.

  • rulego
  • ⛓️RuleGo is a lightweight, high-performance, embedded, next-generation component orchestration rule engine framework for Go.

  • mindsdb
  • AI's query engine - Platform for building AI that can answer questions over large scale federated data. - The only MCP Server you'll ever need

  • hkr04
  • Lightweight C++ MCP (Model Context Protocol) SDK

  • nbonamy
  • Witsy: desktop AI assistant / universal MCP client

  • WangRongsheng
  • 🧑‍🚀 全世界最好的LLM资料总结(视频生成、Agent、辅助编程、数据处理、模型训练、模型推理、o1 模型、MCP、小语言模型、视觉语言模型) | Summary of the world's best LLM resources.

  • labring
  • FastGPT is a knowledge-based platform built on the LLMs, offers a comprehensive suite of out-of-the-box capabilities such as data processing, RAG retrieval, and visual AI workflow orchestration, letting you easily develop and deploy complex question-answering systems without the need for extensive setup or configuration.

    Reviews

    5 (0)