
geoserver-mcp
A Model Context Protocol (MCP) server implementation that connects LLMs to the GeoServer REST API
1
Github Watches
3
Github Forks
18
Github Stars
GeoServer MCP Server
A Model Context Protocol (MCP) server implementation that connects Large Language Models (LLMs) to the GeoServer REST API, enabling AI assistants to interact with geospatial data and services.

Version 0.4.0 (Alpha) is under active development and will be released shortly. We are open to contributions and welcome developers to join us in building this project.
🎥 Demo

📋 Table of Contents
- Features
- Prerequisites
- Installation
- Available Tools
- Client Development
- Planned Features
- Contributing
- License
- Related Projects
- Support
- Badges
🚀 Features
- 🔍 Query and manipulate GeoServer workspaces, layers, and styles
- 🗺️ Execute spatial queries on vector data
- 🎨 Generate map visualizations
- 🌐 Access OGC-compliant web services (WMS, WFS)
- 🛠️ Easy integration with MCP-compatible clients
📋 Prerequisites
- Python 3.10 or higher
- Running GeoServer instance with REST API enabled
- MCP-compatible client (like Claude Desktop or Cursor)
- Internet connection for package installation
🛠️ Installation
Choose the installation method that best suits your needs:
Installing via Smithery
To install GeoServer MCP Server for Claude Desktop automatically via Smithery:
npx -y @smithery/cli install @mahdin75/geoserver-mcp --client claude
🛠️ Installation (Docker)
The Docker installation is the quickest and most isolated way to run the GeoServer MCP server. It's ideal for:
- Quick testing and evaluation
- Production deployments
- Environments where you want to avoid Python dependencies
- Consistent deployment across different systems
- Run geoserver-mcp:
docker pull mahdin75/geoserver-mcp
docker run -d mahdin75/geoserver-mcp
- Configure the clients:
If you are using Claude Desktop, edit claude_desktop_config.json
If you are using Cursor, Create .cursor/mcp.json
{
"mcpServers": {
"geoserver-mcp": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"-e",
"GEOSERVER_URL=http://localhost:8080/geoserver",
"-e",
"GEOSERVER_USER=admin",
"-e",
"GEOSERVER_PASSWORD=geoserver",
"-p",
"8080:8080",
"mahdin75/geoserver-mcp"
]
}
}
}
🛠️ Installation (pip)
The pip installation is recommended for most users who want to run the server directly on their system. This method is best for:
- Regular users who want to run the server locally
- Systems where you have Python 3.10+ installed
- Users who want to customize the server configuration
- Development and testing purposes
- Install uv package manager.
pip install uv
- Create the Virtual Environment (Python 3.10+):
Linux/Mac:
uv venv --python=3.10
Windows PowerShell:
uv venv --python=3.10
- Install the package using pip:
uv pip install geoserver-mcp
- Configure GeoServer connection:
Linux/Mac:
export GEOSERVER_URL="http://localhost:8080/geoserver"
export GEOSERVER_USER="admin"
export GEOSERVER_PASSWORD="geoserver"
Windows PowerShell:
$env:GEOSERVER_URL="http://localhost:8080/geoserver"
$env:GEOSERVER_USER="admin"
$env:GEOSERVER_PASSWORD="geoserver"
- Start the server:
If you are going to use Claude desktop you don't need this step. For cursor or your own custom client you should run the following code.
Linux:
source .venv/bin/activate
geoserver-mcp
or
source .venv/bin/activate
geoserver-mcp --url http://localhost:8080/geoserver --user admin --password geoserver --debug
Windows PowerShell:
.\.venv\Scripts\activate
geoserver-mcp
or
.\.venv\Scripts\activate
geoserver-mcp --url http://localhost:8080/geoserver --user admin --password geoserver --debug
- Configure Clients:
If you are using Claude Desktop, edit claude_desktop_config.json
If you are using Cursor, Create .cursor/mcp.json
Windows:
{
"mcpServers": {
"geoserver-mcp": {
"command": "C:\\path\\to\\geoserver-mcp\\.venv\\Scripts\\geoserver-mcp",
"args": [
"--url",
"http://localhost:8080/geoserver",
"--user",
"admin",
"--password",
"geoserver"
]
}
}
}
Linux:
{
"mcpServers": {
"geoserver-mcp": {
"command": "/path/to/geoserver-mcp/.venv/bin/geoserver-mcp",
"args": [
"--url",
"http://localhost:8080/geoserver",
"--user",
"admin",
"--password",
"geoserver"
]
}
}
}
🛠️ Development installation
The development installation is designed for contributors and developers who want to modify the codebase. This method is suitable for:
- Developers contributing to the project
- Users who need to modify the source code
- Testing new features
- Debugging and development purposes
- Install uv package manager.
pip install uv
- Create the Virtual Environment (Python 3.10+):
uv venv --python=3.10
- Install the package using pip:
uv pip install -e .
- Configure GeoServer connection:
Linux/Mac:
export GEOSERVER_URL="http://localhost:8080/geoserver"
export GEOSERVER_USER="admin"
export GEOSERVER_PASSWORD="geoserver"
Windows PowerShell:
$env:GEOSERVER_URL="http://localhost:8080/geoserver"
$env:GEOSERVER_USER="admin"
$env:GEOSERVER_PASSWORD="geoserver"
- Start the server:
If you are going to use Claude desktop you don't need this step. For cursor or your own custom client you should run the following code.
Linux:
source .venv/bin/activate
geoserver-mcp
or
source .venv/bin/activate
geoserver-mcp --url http://localhost:8080/geoserver --user admin --password geoserver --debug
Windows PowerShell:
.\.venv\Scripts\activate
geoserver-mcp
or
.\.venv\Scripts\activate
geoserver-mcp --url http://localhost:8080/geoserver --user admin --password geoserver --debug
- Configure Clients:
If you are using Claude Desktop, edit claude_desktop_config.json
If you are using Cursor, Create .cursor/mcp.json
Windows:
{
"mcpServers": {
"geoserver-mcp": {
"command": "C:\\path\\to\\geoserver-mcp\\.venv\\Scripts\\geoserver-mcp",
"args": [
"--url",
"http://localhost:8080/geoserver",
"--user",
"admin",
"--password",
"geoserver"
]
}
}
}
Linux:
{
"mcpServers": {
"geoserver-mcp": {
"command": "/path/to/geoserver-mcp/.venv/bin/geoserver-mcp",
"args": [
"--url",
"http://localhost:8080/geoserver",
"--user",
"admin",
"--password",
"geoserver"
]
}
}
}
🛠️ Available Tools
🛠️ Workspace and Layer Management
Tool | Description |
---|---|
list_workspaces |
Get available workspaces |
create_workspace |
Create a new workspace |
get_layer_info |
Get detailed layer metadata |
list_layers |
List layers in a workspace |
create_layer |
Create a new layer |
delete_resource |
Remove resources |
🛠️ Data Operations
Tool | Description |
---|---|
query_features |
Execute CQL queries on vector data |
update_features |
Modify feature attributes |
delete_features |
Remove features based on criteria |
🛠️ Visualization
Tool | Description |
---|---|
generate_map |
Create styled map images |
create_style |
Define new SLD styles |
apply_style |
Apply existing styles to layers |
🛠️ Client Development
If you're planning to develop your own client to interact with the GeoServer MCP server, you can find inspiration in the example client implementation at examples/client.py
. This example demonstrates:
- How to establish a connection with the MCP server
- How to send requests and handle responses
- Basic error handling and connection management
- Example usage of various tools and operations
The example client serves as a good starting point for understanding the protocol and implementing your own client applications.
Also, here is the example usgage:
List Workspaces
Tool: list_workspaces
Parameters: {}
Response: ["default", "demo", "topp", "tiger", "sf"]
Get Layer Information
Tool: get_layer_info
Parameters: {
"workspace": "topp",
"layer": "states"
}
Query Features
Tool: query_features
Parameters: {
"workspace": "topp",
"layer": "states",
"filter": "PERSONS > 10000000",
"properties": ["STATE_NAME", "PERSONS"]
}
Generate Map
Tool: generate_map
Parameters: {
"layers": ["topp:states"],
"styles": ["population"],
"bbox": [-124.73, 24.96, -66.97, 49.37],
"width": 800,
"height": 600,
"format": "png"
}
🔮 Planned Features
- Coverage and raster data management
- Security and access control
- Advanced styling capabilities
- WPS processing operations
- GeoWebCache integration
🤝 Contributing
We welcome contributions! Here's how you can help:
- Fork the repository
- Create a feature branch (
git checkout -b feature/AmazingFeature
) - Commit your changes (
git commit -m 'Add some AmazingFeature'
) - Push to the branch (
git push origin feature/AmazingFeature
) - Open a Pull Request
Please ensure your PR description clearly describes the problem and solution. Include the relevant issue number if applicable.
📄 License
This project is licensed under the MIT License - see the LICENSE file for details.
🔗 Related Projects
- Model Context Protocol - The core MCP implementation
- GeoServer REST API - Official GeoServer REST documentation
- GeoServer REST Python Client - Python client for GeoServer REST API
📞 Support
For support, please Open an issue
🏆 Badges
相关推荐
Vibe coding should have human in the loop! interactive-mcp: Local, cross-platform MCP server for interact with your AI Agent
Simple solution to give Claude ability to check current time via MCP
Interact seamlessly with GitLab repositories to manage merge requests and issues. Fetch details, add comments, and streamline your code review process with ease.
MCP server that gives Claude ability to use OpenAI's GPTs assistants
A simple Model Context Protocol (MCP) server that integrates with Notion's API to manage my personal todo list.
🚀 All-in-one MCP server with AI search, RAG, and multi-service integrations (GitLab/Jira/Confluence/YouTube) for AI-enhanced development workflows