MCP cover image
See in Github
2025-05-25

A Model Context Protocol (MCP) server implementation that connects LLMs to the GeoServer REST API

1

Github Watches

3

Github Forks

18

Github Stars

GeoServer MCP Server

geoserver-mcp image A Model Context Protocol (MCP) server implementation that connects Large Language Models (LLMs) to the GeoServer REST API, enabling AI assistants to interact with geospatial data and services.

geoserver-mcp docs/geoserver-mcp.png

Alpha

Version 0.4.0 (Alpha) is under active development and will be released shortly. We are open to contributions and welcome developers to join us in building this project.

🎥 Demo

geoserver-mcp docs/demo/list_workspaces.png

📋 Table of Contents

🚀 Features

  • 🔍 Query and manipulate GeoServer workspaces, layers, and styles
  • 🗺️ Execute spatial queries on vector data
  • 🎨 Generate map visualizations
  • 🌐 Access OGC-compliant web services (WMS, WFS)
  • 🛠️ Easy integration with MCP-compatible clients

📋 Prerequisites

  • Python 3.10 or higher
  • Running GeoServer instance with REST API enabled
  • MCP-compatible client (like Claude Desktop or Cursor)
  • Internet connection for package installation

🛠️ Installation

Choose the installation method that best suits your needs:

Installing via Smithery

To install GeoServer MCP Server for Claude Desktop automatically via Smithery:

npx -y @smithery/cli install @mahdin75/geoserver-mcp --client claude

🛠️ Installation (Docker)

The Docker installation is the quickest and most isolated way to run the GeoServer MCP server. It's ideal for:

  • Quick testing and evaluation
  • Production deployments
  • Environments where you want to avoid Python dependencies
  • Consistent deployment across different systems
  1. Run geoserver-mcp:
docker pull mahdin75/geoserver-mcp
docker run -d mahdin75/geoserver-mcp
  1. Configure the clients:

If you are using Claude Desktop, edit claude_desktop_config.json If you are using Cursor, Create .cursor/mcp.json

{
  "mcpServers": {
    "geoserver-mcp": {
      "command": "docker",
      "args": [
        "run",
        "-i",
        "--rm",
        "-e",
        "GEOSERVER_URL=http://localhost:8080/geoserver",
        "-e",
        "GEOSERVER_USER=admin",
        "-e",
        "GEOSERVER_PASSWORD=geoserver",
        "-p",
        "8080:8080",
        "mahdin75/geoserver-mcp"
      ]
    }
  }
}

🛠️ Installation (pip)

The pip installation is recommended for most users who want to run the server directly on their system. This method is best for:

  • Regular users who want to run the server locally
  • Systems where you have Python 3.10+ installed
  • Users who want to customize the server configuration
  • Development and testing purposes
  1. Install uv package manager.
pip install uv
  1. Create the Virtual Environment (Python 3.10+):

Linux/Mac:

uv venv --python=3.10

Windows PowerShell:

uv venv --python=3.10
  1. Install the package using pip:
uv pip install geoserver-mcp
  1. Configure GeoServer connection:

Linux/Mac:

export GEOSERVER_URL="http://localhost:8080/geoserver"
export GEOSERVER_USER="admin"
export GEOSERVER_PASSWORD="geoserver"

Windows PowerShell:

$env:GEOSERVER_URL="http://localhost:8080/geoserver"
$env:GEOSERVER_USER="admin"
$env:GEOSERVER_PASSWORD="geoserver"
  1. Start the server:

If you are going to use Claude desktop you don't need this step. For cursor or your own custom client you should run the following code.

Linux:

source .venv/bin/activate

geoserver-mcp

or

source .venv/bin/activate

geoserver-mcp --url http://localhost:8080/geoserver --user admin --password geoserver --debug

Windows PowerShell:

.\.venv\Scripts\activate
geoserver-mcp

or

.\.venv\Scripts\activate
geoserver-mcp --url http://localhost:8080/geoserver --user admin --password geoserver --debug
  1. Configure Clients:

If you are using Claude Desktop, edit claude_desktop_config.json If you are using Cursor, Create .cursor/mcp.json

Windows:

{
  "mcpServers": {
    "geoserver-mcp": {
      "command": "C:\\path\\to\\geoserver-mcp\\.venv\\Scripts\\geoserver-mcp",
      "args": [
        "--url",
        "http://localhost:8080/geoserver",
        "--user",
        "admin",
        "--password",
        "geoserver"
      ]
    }
  }
}

Linux:

{
  "mcpServers": {
    "geoserver-mcp": {
      "command": "/path/to/geoserver-mcp/.venv/bin/geoserver-mcp",
      "args": [
        "--url",
        "http://localhost:8080/geoserver",
        "--user",
        "admin",
        "--password",
        "geoserver"
      ]
    }
  }
}

🛠️ Development installation

The development installation is designed for contributors and developers who want to modify the codebase. This method is suitable for:

  • Developers contributing to the project
  • Users who need to modify the source code
  • Testing new features
  • Debugging and development purposes
  1. Install uv package manager.
pip install uv
  1. Create the Virtual Environment (Python 3.10+):
uv venv --python=3.10
  1. Install the package using pip:
uv pip install -e .
  1. Configure GeoServer connection:

Linux/Mac:

export GEOSERVER_URL="http://localhost:8080/geoserver"
export GEOSERVER_USER="admin"
export GEOSERVER_PASSWORD="geoserver"

Windows PowerShell:

$env:GEOSERVER_URL="http://localhost:8080/geoserver"
$env:GEOSERVER_USER="admin"
$env:GEOSERVER_PASSWORD="geoserver"
  1. Start the server:

If you are going to use Claude desktop you don't need this step. For cursor or your own custom client you should run the following code.

Linux:

source .venv/bin/activate

geoserver-mcp

or

source .venv/bin/activate

geoserver-mcp --url http://localhost:8080/geoserver --user admin --password geoserver --debug

Windows PowerShell:

.\.venv\Scripts\activate
geoserver-mcp

or

.\.venv\Scripts\activate
geoserver-mcp --url http://localhost:8080/geoserver --user admin --password geoserver --debug
  1. Configure Clients:

If you are using Claude Desktop, edit claude_desktop_config.json If you are using Cursor, Create .cursor/mcp.json

Windows:

{
  "mcpServers": {
    "geoserver-mcp": {
      "command": "C:\\path\\to\\geoserver-mcp\\.venv\\Scripts\\geoserver-mcp",
      "args": [
        "--url",
        "http://localhost:8080/geoserver",
        "--user",
        "admin",
        "--password",
        "geoserver"
      ]
    }
  }
}

Linux:

{
  "mcpServers": {
    "geoserver-mcp": {
      "command": "/path/to/geoserver-mcp/.venv/bin/geoserver-mcp",
      "args": [
        "--url",
        "http://localhost:8080/geoserver",
        "--user",
        "admin",
        "--password",
        "geoserver"
      ]
    }
  }
}

🛠️ Available Tools

🛠️ Workspace and Layer Management

Tool Description
list_workspaces Get available workspaces
create_workspace Create a new workspace
get_layer_info Get detailed layer metadata
list_layers List layers in a workspace
create_layer Create a new layer
delete_resource Remove resources

🛠️ Data Operations

Tool Description
query_features Execute CQL queries on vector data
update_features Modify feature attributes
delete_features Remove features based on criteria

🛠️ Visualization

Tool Description
generate_map Create styled map images
create_style Define new SLD styles
apply_style Apply existing styles to layers

🛠️ Client Development

If you're planning to develop your own client to interact with the GeoServer MCP server, you can find inspiration in the example client implementation at examples/client.py. This example demonstrates:

  • How to establish a connection with the MCP server
  • How to send requests and handle responses
  • Basic error handling and connection management
  • Example usage of various tools and operations

The example client serves as a good starting point for understanding the protocol and implementing your own client applications.

Also, here is the example usgage:

List Workspaces


Tool: list_workspaces
Parameters: {}
Response: ["default", "demo", "topp", "tiger", "sf"]

Get Layer Information


Tool: get_layer_info
Parameters: {
"workspace": "topp",
"layer": "states"
}

Query Features


Tool: query_features
Parameters: {
"workspace": "topp",
"layer": "states",
"filter": "PERSONS > 10000000",
"properties": ["STATE_NAME", "PERSONS"]
}

Generate Map


Tool: generate_map
Parameters: {
"layers": ["topp:states"],
"styles": ["population"],
"bbox": [-124.73, 24.96, -66.97, 49.37],
"width": 800,
"height": 600,
"format": "png"
}

🔮 Planned Features

  • Coverage and raster data management
  • Security and access control
  • Advanced styling capabilities
  • WPS processing operations
  • GeoWebCache integration

🤝 Contributing

We welcome contributions! Here's how you can help:

  1. Fork the repository
  2. Create a feature branch (git checkout -b feature/AmazingFeature)
  3. Commit your changes (git commit -m 'Add some AmazingFeature')
  4. Push to the branch (git push origin feature/AmazingFeature)
  5. Open a Pull Request

Please ensure your PR description clearly describes the problem and solution. Include the relevant issue number if applicable.

📄 License

This project is licensed under the MIT License - see the LICENSE file for details.

🔗 Related Projects

📞 Support

For support, please Open an issue

🏆 Badges

相关推荐

  • sirmews
  • Read your Apple Notes with Claude Model Context Protocol

  • mzxrai
  • Chat with OpenAI models from Claude Desktop

  • ttommyth
  • Vibe coding should have human in the loop! interactive-mcp: Local, cross-platform MCP server for interact with your AI Agent

  • kopfrechner
  • Interact seamlessly with GitLab repositories to manage merge requests and issues. Fetch details, add comments, and streamline your code review process with ease.

  • magarcia
  • An implementation of Giphy integration with Model Context Protocol

  • Badhansen
  • A simple Model Context Protocol (MCP) server that integrates with Notion's API to manage my personal todo list.

  • nguyenvanduocit
  • 🚀 All-in-one MCP server with AI search, RAG, and multi-service integrations (GitLab/Jira/Confluence/YouTube) for AI-enhanced development workflows

    Reviews

    5 (0)