MCP cover image

BrandFetch API的模型上下文协议(MCP)服务器

1

Github Watches

0

Github Forks

0

Github Stars

Brandfetch MCP Server

Model Context Protocol (MCP) server for Brandfetch API

MIT licensed Python Version

Overview

This MCP server provides a bridge between Large Language Model (LLM) applications and the Brandfetch API, allowing AI assistants to search for brands and retrieve comprehensive brand information. By implementing the Model Context Protocol, this server enables seamless integration of Brandfetch's brand data capabilities into LLM-powered applications.

Features

  • Brand Search: Search for brands by name and get basic information
  • Detailed Brand Information: Retrieve comprehensive brand data including logos, colors, fonts, and company details
  • Field Filtering: Request only specific information to optimize response size and processing
  • Interactive Prompts: Built-in prompts to guide users on proper API usage
  • Type-safe Implementation: Fully typed Python codebase with modern async support
  • Robust Error Handling: Comprehensive error handling and logging

Installation

Prerequisites

  • Python 3.9 or higher
  • Brandfetch API credentials (API key and Client ID)

Using uv (recommended)

# Create and navigate to a new project directory
uv init brandfetch-mcp
cd brandfetch-mcp

# Clone this repository
git clone https://github.com/VincentSolconBraze/brandfetch-mcp.git .

# Add dependencies
uv add "mcp[cli]" httpx python-dotenv

# For development
uv add --dev pytest pytest-asyncio pytest-cov ruff pyright pre-commit

Using pip

# Clone this repository
git clone https://github.com/VincentSolconBraze/brandfetch-mcp.git
cd brandfetch-mcp

# Install dependencies
pip install "mcp[cli]" httpx python-dotenv

# For development
pip install pytest pytest-asyncio pytest-cov ruff pyright pre-commit

Configuration

  1. Create a .env file based on the example:
cp .env.example .env
  1. Add your Brandfetch API credentials to the .env file:
BRANDFETCH_API_KEY=your_api_key
BRANDFETCH_CLIENT_ID=your_client_id

You can obtain these credentials by creating an account on Brandfetch and navigating to the API section.

Usage

Running with Claude Desktop

The server can be installed directly in Claude Desktop for seamless integration:

mcp install brandfetch_server.py

Testing with MCP Inspector

To debug and test the server locally with the MCP Inspector tool:

mcp dev brandfetch_server.py

Direct Execution

You can also run the server directly:

python brandfetch_server.py

Available Tools

search_brands

Search for brands by name using the Brandfetch Search API.

Parameters:

  • name: The name of the company you are searching for.
  • client_id (optional): Client ID for the API. If not provided, will use the one from environment.

Example:

Search for brands related to "Nike"

get_brand_info

Get detailed brand information by identifier using the Brandfetch Brand API.

Parameters:

  • identifier: Brand identifier (domain, brand ID, ISIN, or stock symbol)
  • fields (optional): List of specific fields to include in the response

Example:

Get detailed information about nike.com with only logos and colors

Examples

The examples directory contains sample code demonstrating how to interact with the server:

  • basic_usage.py: Simple brand search and information retrieval
  • advanced_usage.py: Advanced usage with field filtering and result processing

To run the examples:

python examples/basic_usage.py
python examples/advanced_usage.py

Testing

Run the test suite to verify the server functionality:

pytest

For coverage reporting:

pytest --cov=./ --cov-report=term

Documentation

More detailed documentation is available in the following files:

Contributing

Contributions are welcome! Please see our Contributing Guidelines for more details.

Security

Please review our Security Policy for information on reporting security vulnerabilities.

License

This project is licensed under the MIT License - see the LICENSE file for details.

相关推荐

  • https://suefel.com
  • Latest advice and best practices for custom GPT development.

  • Yusuf Emre Yeşilyurt
  • I find academic articles and books for research and literature reviews.

  • https://maiplestudio.com
  • Find Exhibitors, Speakers and more

  • Carlos Ferrin
  • Encuentra películas y series en plataformas de streaming.

  • Joshua Armstrong
  • Confidential guide on numerology and astrology, based of GG33 Public information

  • Emmet Halm
  • Converts Figma frames into front-end code for various mobile frameworks.

  • Alexandru Strujac
  • Efficient thumbnail creator for YouTube videos

  • Elijah Ng Shi Yi
  • Advanced software engineer GPT that excels through nailing the basics.

  • lumpenspace
  • Take an adjectivised noun, and create images making it progressively more adjective!

  • Lists Tailwind CSS classes in monospaced font

  • https://zenepic.net
  • Embark on a thrilling diplomatic quest across a galaxy on the brink of war. Navigate complex politics and alien cultures to forge peace and avert catastrophe in this immersive interstellar adventure.

  • apappascs
  • 发现市场上最全面,最新的MCP服务器集合。该存储库充当集中式枢纽,提供了广泛的开源和专有MCP服务器目录,并提供功能,文档链接和贡献者。

  • ShrimpingIt
  • MCP系列GPIO Expander的基于Micropython I2C的操作,源自ADAFRUIT_MCP230XX

  • modelcontextprotocol
  • 模型上下文协议服务器

  • Mintplex-Labs
  • 带有内置抹布,AI代理,无代理构建器,MCP兼容性等的多合一桌面和Docker AI应用程序。

  • ravitemer
  • 一个功能强大的Neovim插件,用于管理MCP(模型上下文协议)服务器

  • jae-jae
  • MCP服务器使用剧作《无头浏览器》获取网页内容。

  • patruff
  • Ollama和MCP服务器之间的桥梁,使本地LLMS可以使用模型上下文协议工具

  • pontusab
  • 光标与风浪冲浪社区,查找规则和MCP

  • WangRongsheng
  • 🧑‍🚀 llm 资料总结(数据处理、模型训练、模型部署、 o1 模型、mcp 、小语言模型、视觉语言模型)|摘要世界上最好的LLM资源。

    Reviews

    4 (1)
    Avatar
    user_3Hw3G6vt
    2025-04-17

    As a dedicated user of brandfetch-mcp, I am thoroughly impressed by its seamless integration and efficiency. Created by VincentSolconBraze, this tool provides an exceptional experience for managing brand assets. With its intuitive interface and robust features, it's an indispensable resource for anyone looking to streamline their branding workflow. Highly recommend checking it out on GitHub!