Cover image
Try Now
2025-04-05

Postgres MCP服务器

3 years

Works with Finder

1

Github Watches

0

Github Forks

3

Github Stars

MCP PostgreSQL Demo

A FastMCP server that enables LLMs to connect and interact with PostgreSQL databases. This project demonstrates how to use the Model Context Protocol (MCP) to allow Language Models to query and explore database schemas and tables.

Features

  • Schema Exploration: Retrieve metadata about database schemas
  • Table Inspection: Get detailed information about table structures
  • Database Querying: Execute SQL queries against the database
  • YAML Formatting: Results are returned in YAML format for easy consumption by LLMs

Resources

The server exposes the following MCP resources:

  • database://{schema} - Get information about all tables in a schema
  • database://{schema}/tables/{table} - Get detailed information about a specific table

Tools

  • query_database - Execute SQL queries against the database (SELECT queries only)

Prompts

The server includes the following predefined prompts:

  • prompt_schema_description - Ask for a description of a database schema
  • prompt_table_description - Ask for a description of a specific table
  • prompt_query_database - Ask for data from a specific table

Prerequisites

  • Python 3.12 or higher
  • PostgreSQL database
  • UV package manager (recommended)

Installation

  1. Clone the repository:

    git clone <repository-url>
    cd mcp-demo
    
  2. Create a virtual environment:

    python -m venv .venv
    source .venv/bin/activate  # On Windows: .venv\Scripts\activate
    
  3. Install UV (if not already installed):

    pip install uv
    
  4. Install dependencies with UV:

    uv sync
    
  5. Configure environment variables:

    • Copy .env.example to .env
    • Update the values according to your PostgreSQL configuration

Configuration

The application is configured using environment variables:

Variable Description Default
APP_NAME Application name mcp-demo
DB_HOST PostgreSQL host localhost
DB_PORT PostgreSQL port 5432
DB_USER PostgreSQL username postgres
DB_PASSWORD PostgreSQL password postgres
DB_NAME PostgreSQL database name postgres

Usage

  1. First, uncomment the run function in src/main.py by removing the comment from these lines at the bottom of the file:

    # if __name__ == "__main__":
    #     print("Starting FastMCP server...")
    #     mcp.run()
    
  2. Start the FastMCP server:

    python -m src.main
    
  3. The server will be available for LLMs to connect to and query your PostgreSQL database. With the server running, the MCP can be loaded into client applications for interaction.

Client Configuration

To use this MCP in a client application, add the following configuration to your client's MCP configuration file (e.g., .cursor/mcp.json):

{
  "mcpServers": {
    "postgres-mcp-server": {
      "command": "/path/to/your/venv/bin/mcp",
      "args": ["run", "/path/to/your/postgres-mcp/src/main.py"],
      "env": {
        "APP_NAME": "mcp-demo",
        "DB_HOST": "localhost",
        "DB_PORT": "5432",
        "DB_USER": "postgres",
        "DB_PASSWORD": "postgres",
        "DB_NAME": "postgres"
      }
    }
  }
}

Be sure to replace the paths with the actual paths to your virtual environment and project directory, and update the environment variables to match your PostgreSQL configuration.

Development

Install development dependencies with UV:

uv pip install -e ".[dev]"

Development tools included:

  • JupyterLab for notebooks
  • Pyright for type checking
  • Ruff for linting

Docker

To run the application with Docker:

  1. Build the Docker image:

    docker build -t mcp-demo .
    
  2. Run the container:

    docker run --env-file .env.docker -p 8000:8000 mcp-demo
    

Example Usage

Get Schema Information

from mcp.client import get_client

client = get_client("http://localhost:8000")
schema_info = client.get_resource("database://public")
print(schema_info)

Get Table Details

table_info = client.get_resource("database://public/tables/users")
print(table_info)

Execute a Query

result = client.invoke_tool("query_database", {"query": "SELECT * FROM users LIMIT 10"})
print(result)

License

[Add your license information here]

Contributors

相关推荐

  • Joshua Armstrong
  • Confidential guide on numerology and astrology, based of GG33 Public information

  • https://suefel.com
  • Latest advice and best practices for custom GPT development.

  • Emmet Halm
  • Converts Figma frames into front-end code for various mobile frameworks.

  • Elijah Ng Shi Yi
  • Advanced software engineer GPT that excels through nailing the basics.

  • https://maiplestudio.com
  • Find Exhibitors, Speakers and more

  • Alexandru Strujac
  • Efficient thumbnail creator for YouTube videos

  • Yusuf Emre Yeşilyurt
  • I find academic articles and books for research and literature reviews.

  • Carlos Ferrin
  • Encuentra películas y series en plataformas de streaming.

  • https://zenepic.net
  • Embark on a thrilling diplomatic quest across a galaxy on the brink of war. Navigate complex politics and alien cultures to forge peace and avert catastrophe in this immersive interstellar adventure.

  • https://reddgr.com
  • Delivers concise Python code and interprets non-English comments

  • apappascs
  • 发现市场上最全面,最新的MCP服务器集合。该存储库充当集中式枢纽,提供了广泛的开源和专有MCP服务器目录,并提供功能,文档链接和贡献者。

  • ShrimpingIt
  • MCP系列GPIO Expander的基于Micropython I2C的操作,源自ADAFRUIT_MCP230XX

  • pontusab
  • 光标与风浪冲浪社区,查找规则和MCP

  • av
  • 毫不费力地使用一个命令运行LLM后端,API,前端和服务。

  • GeyserMC
  • 与Minecraft客户端/服务器通信的库。

  • 1Panel-dev
  • 🔥1Panel提供了直观的Web接口和MCP服务器,用于在Linux服务器上管理网站,文件,容器,数据库和LLMS。

  • Mintplex-Labs
  • 带有内置抹布,AI代理,无代理构建器,MCP兼容性等的多合一桌面和Docker AI应用程序。

  • awslabs
  • AWS MCP服务器 - 将AWS最佳实践直接带入您的开发工作流程的专门MCP服务器

  • modelcontextprotocol
  • 模型上下文协议服务器

    Reviews

    5 (1)
    Avatar
    user_FkBUZw7v
    2025-04-16

    As a loyal mcp application user, I highly recommend postgres-mcp! This tool by Tibiritabara is a game-changer for database management and automation. It's user-friendly, robust, and integrates seamlessly into my workflow. Check it out on GitHub: https://github.com/Tibiritabara/postgres-mcp.