Confidential guide on numerology and astrology, based of GG33 Public information

MCP-PROMPTS-RS
使用模型上下文协议(MCP)管理AI提示的锈服务器
3 years
Works with Finder
1
Github Watches
0
Github Forks
0
Github Stars
mcp-prompts-rs
A Rust-based server for managing AI prompts using the Model Context Protocol (MCP).
Overview
mcp-prompts-rs is a Rust implementation of a prompt management server that adheres to the Model Context Protocol (MCP), an open standard for connecting AI applications to data sources and tools. This project is a Rust rewrite of the original mcp-prompts TypeScript implementation.
The server provides functionality for storing, retrieving, and managing AI prompts with support for template variables, categorization, and multiple storage backends.
Features
- Prompt Management: Create, retrieve, update, and delete prompts with categorization
- Template Support: Create prompts with variables for runtime customization
- Storage Backends: Support for file system and PostgreSQL storage options
- API: RESTful endpoints with Server-Sent Events (SSE) for real-time updates
- MCP Integration: Implements the Model Context Protocol for seamless integration with AI assistants like Claude
- Project Orchestration: Tools for automating software project creation using templates
- Deployment: Docker support and health check endpoints
Installation
Prerequisites
- Rust 1.70 or higher
- Cargo (Rust's package manager)
- Optional: PostgreSQL for database storage
Setup
- Clone the repository:
git clone https://github.com/your-username/mcp-prompts-rs.git
cd mcp-prompts-rs
- Build the project:
cargo build
Usage
Running the Server
Start the server with default settings:
cargo run
With custom configuration:
cargo run -- --port 3000 --storage filesystem
CLI Options
-
--port <PORT>
: Set the server port (default: 8080) -
--storage <TYPE>
: Choose storage backend (filesystem, postgres) -
--db-url <URL>
: PostgreSQL connection string (when using postgres storage) -
--prompt-dir <DIR>
: Directory for prompt storage (when using filesystem storage)
Integration with Claude
To integrate with Claude Desktop:
- Open Claude Desktop
- Go to Settings → Developer → Edit Config
- Add the following to your configuration:
{
"mcp": {
"servers": [
{
"name": "mcp-prompts-rs",
"url": "http://localhost:8080"
}
]
}
}
API Endpoints
Prompts
-
GET /prompts
: List all prompts -
GET /prompts/:id
: Get a specific prompt -
POST /prompts
: Create a new prompt -
PUT /prompts/:id
: Update an existing prompt -
DELETE /prompts/:id
: Delete a prompt
SSE
-
GET /events
: Server-Sent Events endpoint for real-time updates
Development
Project Structure
-
src/main.rs
: Entry point and server setup -
src/prompt/
: Prompt models and logic -
src/storage/
: Storage backend implementations -
src/api/
: API endpoint handlers -
src/template/
: Template processing utilities
Building from Source
cargo build
Running Tests
cargo test
Docker Support
Build and run with Docker:
docker build -t mcp-prompts-rs .
docker run -p 8080:8080 mcp-prompts-rs
Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
- Fork the repository
- Create your feature branch (
git checkout -b feature/amazing-feature
) - Commit your changes (
git commit -m 'Add some amazing feature'
) - Push to the branch (
git push origin feature/amazing-feature
) - Open a Pull Request
License
This project is licensed under the Apache License 2.0 - see the LICENSE file for details.
Acknowledgments
- Original mcp-prompts TypeScript project
- Model Context Protocol
- Rust SDK for MCP
相关推荐
Take an adjectivised noun, and create images making it progressively more adjective!
Siri Shortcut Finder – your go-to place for discovering amazing Siri Shortcuts with ease
一个适用于中小型团队的AI聊天机器人,支持DeepSeek,Open AI,Claude和Gemini等车型。 专为中小团队设计的ai聊天应用,支持deepSeek,打开ai,claude,双子座等模型。
Reviews

user_KoLrQ3ZL
mcp-prompts-rs is an outstanding tool for anyone working with Rust programming language. Its ease of use and comprehensive prompt definitions make it a must-have for developers. Created by sparesparrow, this tool has significantly streamlined my coding workflow. Highly recommended! Check it out on GitHub: https://github.com/sparesparrow/mcp-prompts-rs.