Confidential guide on numerology and astrology, based of GG33 Public information

Llamacloud-MCP
3 years
Works with Finder
5
Github Watches
15
Github Forks
82
Github Stars
LlamaIndex MCP demos
This repo demonstrates both how to create an MCP server using LlamaCloud and how to use LlamaIndex as an MCP client.
LlamaCloud as an MCP server
To provide a local MCP server that can be used by a client like Claude Desktop, you can use mcp-server.py
. You can use this to provide a tool that will use RAG to provide Claude with up-to-the-second private information that it can use to answer questions. You can provide as many of these tools as you want.
Set up your LlamaCloud index
- Get a LlamaCloud account
- Create a new index with any data source you want. In our case we used Google Drive and provided a subset of the LlamaIndex documentation as a source. You could also upload documents directly to the index if you just want to test it out.
- Get an API key from the LlamaCloud UI
Set up your MCP server
- Clone this repository
- Create a
.env
file and add two environment variables:-
LLAMA_CLOUD_API_KEY
- The API key you got in the previous step -
OPENAI_API_KEY
- An OpenAI API key. This is used to power the RAG query. You can use any other LLM if you don't want to use OpenAI.
-
Now let's look at the code. First you instantiate an MCP server:
mcp = FastMCP('llama-index-server')
Then you define your tool using the @mcp.tool()
decorator:
@mcp.tool()
def llama_index_documentation(query: str) -> str:
"""Search the llama-index documentation for the given query."""
index = LlamaCloudIndex(
name="mcp-demo-2",
project_name="Rando project",
organization_id="e793a802-cb91-4e6a-bd49-61d0ba2ac5f9",
api_key=os.getenv("LLAMA_CLOUD_API_KEY"),
)
response = index.as_query_engine().query(query + " Be verbose and include code examples.")
return str(response)
Here our tool is called llama_index_documentation
; it instantiates a LlamaCloud index called mcp-demo-2
and then uses it as a query engine to answer the query, including some extra instructions in the prompt. You'll get instructions on how to set up your LlamaCloud index in the next section.
Finally, you run the server:
if __name__ == "__main__":
mcp.run(transport="stdio")
Note the stdio
transport, used for communicating to Claude Desktop.
Configure Claude Desktop
- Install Claude Desktop
- In the menu bar choose
Claude
->Settings
->Developer
->Edit Config
. This will show up a config file that you can edit in your preferred text editor. - You'll want your config to look something like this (make sure to replace
$YOURPATH
with the path to the repository):
{
"mcpServers": {
"llama_index_docs_server": {
"command": "poetry",
"args": [
"--directory",
"$YOURPATH/llamacloud-mcp",
"run",
"python",
"$YOURPATH/llamacloud-mcp/mcp-server.py"
]
}
}
}
Make sure to restart Claude Desktop after configuring the file.
Now you're ready to query! You should see a tool icon with your server listed underneath the query box in Claude Desktop, like this:
LlamaIndex as an MCP client
LlamaIndex also has an MCP client integration, meaning you can turn any MCP server into a set of tools that can be used by an agent. You can see this in mcp-client.py
, where we use the BasicMCPClient
to connect to our local MCP server.
For simplicity of demo, we are using the same MCP server we just set up above. Ordinarily, you would not use MCP to connect LlamaCloud to a LlamaIndex agent, you would use QueryEngineTool and pass it directly to the agent.
Set up your MCP server
To provide a local MCP server that can be used by an HTTP client, we need to slightly modify mcp-server.py
to use the run_sse_async
method instead of run
. You can find this in mcp-http-server.py
.
mcp = FastMCP('llama-index-server',port=8000)
asyncio.run(mcp.run_sse_async())
Get your tools from the MCP server
mcp_client = BasicMCPClient("http://localhost:8000/sse")
mcp_tool_spec = McpToolSpec(
client=mcp_client,
# Optional: Filter the tools by name
# allowed_tools=["tool1", "tool2"],
)
tools = mcp_tool_spec.to_tool_list()
Create an agent and ask a question
llm = OpenAI(model="gpt-4o-mini")
agent = FunctionAgent(
tools=tools,
llm=llm,
system_prompt="You are an agent that knows how to build agents in LlamaIndex.",
)
async def run_agent():
response = await agent.run("How do I instantiate an agent in LlamaIndex?")
print(response)
if __name__ == "__main__":
asyncio.run(run_agent())
You're all set! You can now use the agent to answer questions from your LlamaCloud index.
相关推荐
Converts Figma frames into front-end code for various mobile frameworks.
Advanced software engineer GPT that excels through nailing the basics.
I find academic articles and books for research and literature reviews.
Embark on a thrilling diplomatic quest across a galaxy on the brink of war. Navigate complex politics and alien cultures to forge peace and avert catastrophe in this immersive interstellar adventure.
Delivers concise Python code and interprets non-English comments
Descubra la colección más completa y actualizada de servidores MCP en el mercado. Este repositorio sirve como un centro centralizado, que ofrece un extenso catálogo de servidores MCP de código abierto y propietarios, completos con características, enlaces de documentación y colaboradores.
Manipulación basada en Micrypthon I2C del expansor GPIO de la serie MCP, derivada de AdaFruit_MCP230xx
🔥 1Panel proporciona una interfaz web intuitiva y un servidor MCP para administrar sitios web, archivos, contenedores, bases de datos y LLM en un servidor de Linux.
La aplicación AI de escritorio todo en uno y Docker con trapo incorporado, agentes de IA, creador de agentes sin código, compatibilidad de MCP y más.
Servidores AWS MCP: servidores MCP especializados que traen las mejores prácticas de AWS directamente a su flujo de trabajo de desarrollo
🧑🚀 全世界最好的 llM 资料总结(数据处理、模型训练、模型部署、 O1 模型、 MCP 、小语言模型、视觉语言模型) | Resumen de los mejores recursos del mundo.
Servidores MCP impresionantes: una lista curada de servidores de protocolo de contexto del modelo
Reviews

user_Y2eaz2HZ
As a loyal user of llamacloud-mcp, I am incredibly impressed with its performance and versatility. It seamlessly integrates into my workflows, enhancing productivity and efficiency. The user-friendly interface and robust features made it a game-changer for my projects. Hats off to run-llama for creating such an exceptional tool! Highly recommend checking it out: https://github.com/run-llama/llamacloud-mcp.