Confidential guide on numerology and astrology, based of GG33 Public information

Mcp_server
3 years
Works with Finder
1
Github Watches
0
Github Forks
0
Github Stars
Model Context Provider (MCP) Server
Overview
The Model Context Provider (MCP) Server is a lightweight and efficient system designed to manage contextual data for AI models. It helps AI applications retrieve relevant context based on user queries, improving the overall intelligence and responsiveness of AI-driven systems.
Features
- Context Management: Add, update, and retrieve structured context data.
- Query-Based Context Matching: Identify relevant contexts using a keyword-based search algorithm.
- JSON-Based Storage: Handles structured AI context data.
- File-Based Context Loading: Load context dynamically from external JSON files.
- Debugging Support: Provides detailed debug logs for query processing.
Installation
To install and run the MCP Server, follow these steps:
# Clone the repository
git clone https://github.com/your-repo/mcp-server.git
cd mcp-server
# Install dependencies
pip install -r requirements.txt
Usage
1. Initialize MCP Server
from mcp_server import ModelContextProvider
mcp = ModelContextProvider()
2. Add Context
mcp.add_context(
"company_info",
{
"name": "TechCorp",
"founded": 2010,
"industry": "Artificial Intelligence",
"products": ["AI Assistant", "Smart Analytics", "Prediction Engine"],
"mission": "To make AI accessible to everyone"
}
)
3. Query Context
query = "What are the features of the AI Assistant product?"
relevant_context = mcp.query_context(query)
print(relevant_context)
4. Provide Context to AI Model
model_context = mcp.provide_model_context(query)
print(model_context)
API Methods
Method | Description |
---|---|
add_context(context_id, content, metadata) |
Adds or updates a context. |
get_context(context_id) |
Retrieves context by ID. |
query_context(query, relevance_threshold) |
Finds relevant contexts based on a query. |
provide_model_context(query, max_contexts) |
Returns structured model-ready context. |
Contributing
We welcome contributions! If you want to improve MCP Server, feel free to fork the repo and submit a pull request.
相关推荐
Converts Figma frames into front-end code for various mobile frameworks.
Advanced software engineer GPT that excels through nailing the basics.
I find academic articles and books for research and literature reviews.
Embark on a thrilling diplomatic quest across a galaxy on the brink of war. Navigate complex politics and alien cultures to forge peace and avert catastrophe in this immersive interstellar adventure.
Delivers concise Python code and interprets non-English comments
Descubra la colección más completa y actualizada de servidores MCP en el mercado. Este repositorio sirve como un centro centralizado, que ofrece un extenso catálogo de servidores MCP de código abierto y propietarios, completos con características, enlaces de documentación y colaboradores.
Manipulación basada en Micrypthon I2C del expansor GPIO de la serie MCP, derivada de AdaFruit_MCP230xx
🔥 1Panel proporciona una interfaz web intuitiva y un servidor MCP para administrar sitios web, archivos, contenedores, bases de datos y LLM en un servidor de Linux.
La aplicación AI de escritorio todo en uno y Docker con trapo incorporado, agentes de IA, creador de agentes sin código, compatibilidad de MCP y más.
Servidores AWS MCP: servidores MCP especializados que traen las mejores prácticas de AWS directamente a su flujo de trabajo de desarrollo
Reviews

user_Ff5N0YW3
As a dedicated user of MCP_Server, I am truly impressed by its robust performance and seamless integration capabilities. Developed by Ronak501, this server application offers exceptional reliability and scalability that cater to various needs. The responsiveness and ease of deployment have significantly improved our project workflows. Highly recommend checking it out at https://github.com/Ronak501/MCP_Server!