MCP cover image
See in Github
2025-04-14

MCP HUB是构建,管理和部署模型上下文协议(MCP)客户端和服务器的综合框架。它提供工具和配置,以实现端到端MCP工作流程的无缝集成和执行。

1

Github Watches

0

Github Forks

2

Github Stars

MCP Hub Documentation

Overview

MCP Hub is a framework for creating and managing Model Context Protocol (MCP) servers and clients. It leverages the uv tool for fast package installation and configuration management.

Why Use UV?

UV simplifies package management and configuration with blazing-fast commands. Learn a few commands to get started, and you're good to go:

  • Initialize a project:
    uv init
    
  • Sync Python version and dependencies:
    uv sync
    

For more details, visit the UV GitHub repository.

Motivation

To understand the basics of MCP and get started with creating MCP servers, refer to the MCP Quickstart Server Guide.

Getting Started

How to Create a Sample MCP Server

  1. Create a New Project Directory

    uv init XYZ
    cd XYZ
    
  2. Set Up a Virtual Environment

    uv venv
    source .venv/bin/activate
    
  3. Install Dependencies

    uv add "mcp[cli]" httpx
    
  4. Create the Server File

    touch XYZ.py
    

How to Run the MCP Server

To run the server, use the following command:

uv run XYZ.py

Example: Creating a New XYZ Server

Follow the steps outlined above to create and run a new XYZ server. Replace XYZ with your desired project name.

Recent Updates

Notebooks Directory

The notebooks/ directory has been added to the project. It includes configuration files and scripts for setting up and running JupyterHub. Key files include:

  • jupyterhub_config.py: Configuration for JupyterHub.
  • start_jupyterhub.sh: Script to start the JupyterHub server.

CIFAR-10 Dataset Downloader

A new script has been added under ai/computer-vision/09_datasets/ to download the CIFAR-10 dataset using TensorFlow/Keras. To use it, run:

python ai/computer-vision/09_datasets/download_cifar10.py

This script downloads the dataset and prints a confirmation message.

AI Folder

The ai/ folder contains various subdirectories and scripts related to computer vision and artificial intelligence. Below is an overview of its structure and contents:

Subdirectories and Files

01_image_handling

  • basic_manipulations.py: Basic image manipulation techniques.
  • blue_image.png: Sample image for testing.
  • hello_cv.py: A simple script to demonstrate computer vision basics.
  • image_representation.py: Explains image representation in computer vision.
  • read_display_save.py: Script to read, display, and save images.
  • README.md: Documentation for this subdirectory.

02_image_preprocessing

  • augmentation.py: Image augmentation techniques.
  • normalization.py: Image normalization methods.

03_feature_extraction

  • hog_extraction.py: Extracts Histogram of Oriented Gradients (HOG) features.
  • sift_surf_extraction.py: Demonstrates SIFT and SURF feature extraction.

04_basic_ml_concepts

  • hog_svm_classifier.py: Implements a classifier using HOG features and SVM.

05_deep_learning_cnn

  • cnn_architecture.py: Defines a Convolutional Neural Network (CNN) architecture.

06_image_classification

  • train_classifier.py: Script to train an image classifier.

07_object_detection

  • basic_object_detection.py: Demonstrates basic object detection techniques.

08_image_segmentation

  • basic_segmentation.py: Explains basic image segmentation methods.

09_datasets

  • download_cifar10.py: Script to download the CIFAR-10 dataset.

10_utils

  • image_utils.py: Utility functions for image processing.

Additional Files

  • main.py: Entry point for AI-related scripts.
  • pyproject.toml: Configuration file for the project.
  • README.md: Documentation for the ai/ folder.
  • run.sh: Shell script to execute AI-related tasks.
  • uv.lock: Lock file for dependencies.

相关推荐

  • https://suefel.com
  • Latest advice and best practices for custom GPT development.

  • Yusuf Emre Yeşilyurt
  • I find academic articles and books for research and literature reviews.

  • https://maiplestudio.com
  • Find Exhibitors, Speakers and more

  • Carlos Ferrin
  • Encuentra películas y series en plataformas de streaming.

  • Contraband Interactive
  • Emulating Dr. Jordan B. Peterson's style in providing life advice and insights.

  • Joshua Armstrong
  • Confidential guide on numerology and astrology, based of GG33 Public information

  • rustassistant.com
  • Your go-to expert in the Rust ecosystem, specializing in precise code interpretation, up-to-date crate version checking, and in-depth source code analysis. I offer accurate, context-aware insights for all your Rust programming questions.

  • Emmet Halm
  • Converts Figma frames into front-end code for various mobile frameworks.

  • Alexandru Strujac
  • Efficient thumbnail creator for YouTube videos

  • Elijah Ng Shi Yi
  • Advanced software engineer GPT that excels through nailing the basics.

  • lumpenspace
  • Take an adjectivised noun, and create images making it progressively more adjective!

  • apappascs
  • 发现市场上最全面,最新的MCP服务器集合。该存储库充当集中式枢纽,提供了广泛的开源和专有MCP服务器目录,并提供功能,文档链接和贡献者。

  • ShrimpingIt
  • MCP系列GPIO Expander的基于Micropython I2C的操作,源自ADAFRUIT_MCP230XX

  • modelcontextprotocol
  • 模型上下文协议服务器

  • Mintplex-Labs
  • 带有内置抹布,AI代理,无代理构建器,MCP兼容性等的多合一桌面和Docker AI应用程序。

  • ravitemer
  • 一个功能强大的Neovim插件,用于管理MCP(模型上下文协议)服务器

  • jae-jae
  • MCP服务器使用剧作《无头浏览器》获取网页内容。

  • patruff
  • Ollama和MCP服务器之间的桥梁,使本地LLMS可以使用模型上下文协议工具

  • n8n-io
  • 具有本机AI功能的公平代码工作流程自动化平台。将视觉构建与自定义代码,自宿主或云相结合,400+集成。

  • WangRongsheng
  • 🧑‍🚀 llm 资料总结(数据处理、模型训练、模型部署、 o1 模型、mcp 、小语言模型、视觉语言模型)|摘要世界上最好的LLM资源。

    Reviews

    3 (1)
    Avatar
    user_xToihejl
    2025-04-17

    As a dedicated user of the mcp-hub by reddy-sh, I am genuinely impressed by its functionality and seamless integration. The comprehensive documentation and user-friendly interface have significantly boosted my productivity. It's a must-have tool for any developer looking to streamline their workflow. Highly recommended!