Cover image
visión del conjunto de datos
Public

visión del conjunto de datos

Try Now
2025-01-06

Servidor MCP para abrazar el espectador de conjuntos de datos

3 years

Works with Finder

1

Github Watches

7

Github Forks

12

Github Stars

Dataset Viewer MCP Server

An MCP server for interacting with the Hugging Face Dataset Viewer API, providing capabilities to browse and analyze datasets hosted on the Hugging Face Hub.

Features

Resources

  • Uses dataset:// URI scheme for accessing Hugging Face datasets
  • Supports dataset configurations and splits
  • Provides paginated access to dataset contents
  • Handles authentication for private datasets
  • Supports searching and filtering dataset contents
  • Provides dataset statistics and analysis

Tools

The server provides the following tools:

  1. validate

    • Check if a dataset exists and is accessible
    • Parameters:
      • dataset: Dataset identifier (e.g. 'stanfordnlp/imdb')
      • auth_token (optional): For private datasets
  2. get_info

    • Get detailed information about a dataset
    • Parameters:
      • dataset: Dataset identifier
      • auth_token (optional): For private datasets
  3. get_rows

    • Get paginated contents of a dataset
    • Parameters:
      • dataset: Dataset identifier
      • config: Configuration name
      • split: Split name
      • page (optional): Page number (0-based)
      • auth_token (optional): For private datasets
  4. get_first_rows

    • Get first rows from a dataset split
    • Parameters:
      • dataset: Dataset identifier
      • config: Configuration name
      • split: Split name
      • auth_token (optional): For private datasets
  5. get_statistics

    • Get statistics about a dataset split
    • Parameters:
      • dataset: Dataset identifier
      • config: Configuration name
      • split: Split name
      • auth_token (optional): For private datasets
  6. search_dataset

    • Search for text within a dataset
    • Parameters:
      • dataset: Dataset identifier
      • config: Configuration name
      • split: Split name
      • query: Text to search for
      • auth_token (optional): For private datasets
  7. filter

    • Filter rows using SQL-like conditions
    • Parameters:
      • dataset: Dataset identifier
      • config: Configuration name
      • split: Split name
      • where: SQL WHERE clause (e.g. "score > 0.5")
      • orderby (optional): SQL ORDER BY clause
      • page (optional): Page number (0-based)
      • auth_token (optional): For private datasets
  8. get_parquet

    • Download entire dataset in Parquet format
    • Parameters:
      • dataset: Dataset identifier
      • auth_token (optional): For private datasets

Installation

Prerequisites

  • Python 3.12 or higher
  • uv - Fast Python package installer and resolver

Setup

  1. Clone the repository:
git clone https://github.com/privetin/dataset-viewer.git
cd dataset-viewer
  1. Create a virtual environment and install:
# Create virtual environment
uv venv

# Activate virtual environment
# On Unix:
source .venv/bin/activate
# On Windows:
.venv\Scripts\activate

# Install in development mode
uv add -e .

Configuration

Environment Variables

  • HUGGINGFACE_TOKEN: Your Hugging Face API token for accessing private datasets

Claude Desktop Integration

Add the following to your Claude Desktop config file:

On Windows: %APPDATA%\Claude\claude_desktop_config.json

On MacOS: ~/Library/Application Support/Claude/claude_desktop_config.json

{
  "mcpServers": {
    "dataset-viewer": {
      "command": "uv",
      "args": [
        "run",
        "dataset-viewer"
      ]
    }
  }
}

Usage Examples

  1. Validate a dataset:
{
  "dataset": "stanfordnlp/imdb"
}
  1. Get dataset information:
{
  "dataset": "stanfordnlp/imdb"
}
  1. Search dataset contents:
{
  "dataset": "stanfordnlp/imdb",
  "config": "plain_text",
  "split": "train",
  "query": "great movie"
}
  1. Filter and sort rows:
{
  "dataset": "stanfordnlp/imdb",
  "config": "plain_text",
  "split": "train",
  "where": "label = 'positive'",
  "orderby": "text DESC",
  "page": 0
}
  1. Get dataset statistics:
{
  "dataset": "stanfordnlp/imdb",
  "config": "plain_text",
  "split": "train"
}

License

MIT License - see LICENSE for details

相关推荐

  • NiKole Maxwell
  • I craft unique cereal names, stories, and ridiculously cute Cereal Baby images.

  • Joshua Armstrong
  • Confidential guide on numerology and astrology, based of GG33 Public information

  • https://suefel.com
  • Latest advice and best practices for custom GPT development.

  • Callycode Limited
  • A geek-themed horoscope generator blending Bitcoin prices, tech jargon, and astrological whimsy.

  • Emmet Halm
  • Converts Figma frames into front-end code for various mobile frameworks.

  • XLwebDev.com
  • PR Professional: Guiding You to Get Media Placements and Publicity Quickly and Effectively

  • Elijah Ng Shi Yi
  • Advanced software engineer GPT that excels through nailing the basics.

  • Beniyam Berhanu
  • Therapist adept at identifying core issues and offering practical advice with images.

  • apappascs
  • Descubra la colección más completa y actualizada de servidores MCP en el mercado. Este repositorio sirve como un centro centralizado, que ofrece un extenso catálogo de servidores MCP de código abierto y propietarios, completos con características, enlaces de documentación y colaboradores.

  • ShrimpingIt
  • Manipulación basada en Micrypthon I2C del expansor GPIO de la serie MCP, derivada de AdaFruit_MCP230xx

  • OffchainLabs
  • Implementación de la prueba de estaca Ethereum

  • huahuayu
  • Una puerta de enlace de API unificada para integrar múltiples API de explorador de blockchain similar a Esterscan con soporte de protocolo de contexto modelo (MCP) para asistentes de IA.

  • deemkeen
  • Controle su MBOT2 con un combo de potencia: MQTT+MCP+LLM

    Reviews

    4 (1)
    Avatar
    user_KNZZm1lq
    2025-04-15

    AgenticProductSearching by Gen-AI-Developer is a game-changer! The seamless integration and user-friendly interface are impressive. The product has significantly enhanced my search efficiency and accuracy. I highly recommend it to anyone seeking an effective solution for product searches. The performance is robust and reliable. Check it out: https://mcp.so/server/AgenticProductSearching/Gen-AI-Developer