I craft unique cereal names, stories, and ridiculously cute Cereal Baby images.

MCP-server-llmling
Serveur MCP (Protocole de contexte du modèle) avec backend LLMling
3 years
Works with Finder
1
Github Watches
2
Github Forks
5
Github Stars
mcp-server-llmling
LLMling Server Manual
Overview
mcp-server-llmling is a server for the Machine Chat Protocol (MCP) that provides a YAML-based configuration system for LLM applications.
LLMLing, the backend, provides a YAML-based configuration system for LLM applications. It allows to set up custom MCP servers serving content defined in YAML files.
- Static Declaration: Define your LLM's environment in YAML - no code required
- MCP Protocol: Built on the Machine Chat Protocol (MCP) for standardized LLM interaction
-
Component Types:
- Resources: Content providers (files, text, CLI output, etc.)
- Prompts: Message templates with arguments
- Tools: Python functions callable by the LLM
The YAML configuration creates a complete environment that provides the LLM with:
- Access to content via resources
- Structured prompts for consistent interaction
- Tools for extending capabilities
Key Features
1. Resource Management
- Load and manage different types of resources:
- Text files (
PathResource
) - Raw text content (
TextResource
) - CLI command output (
CLIResource
) - Python source code (
SourceResource
) - Python callable results (
CallableResource
) - Images (
ImageResource
)
- Text files (
- Support for resource watching/hot-reload
- Resource processing pipelines
- URI-based resource access
2. Tool System
- Register and execute Python functions as LLM tools
- Support for OpenAPI-based tools
- Entry point-based tool discovery
- Tool validation and parameter checking
- Structured tool responses
3. Prompt Management
- Static prompts with template support
- Dynamic prompts from Python functions
- File-based prompts
- Prompt argument validation
- Completion suggestions for prompt arguments
4. Multiple Transport Options
- Stdio-based communication (default)
- Server-Sent Events (SSE) for web clients
- Support for custom transport implementations
Usage
With Zed Editor
Add LLMLing as a context server in your settings.json
:
{
"context_servers": {
"llmling": {
"command": {
"env": {},
"label": "llmling",
"path": "uvx",
"args": [
"mcp-server-llmling",
"start",
"path/to/your/config.yml"
]
},
"settings": {}
}
}
}
With Claude Desktop
Configure LLMLing in your claude_desktop_config.json
:
{
"mcpServers": {
"llmling": {
"command": "uvx",
"args": [
"mcp-server-llmling",
"start",
"path/to/your/config.yml"
],
"env": {}
}
}
}
Manual Server Start
Start the server directly from command line:
# Latest version
uvx mcp-server-llmling@latest
1. Programmatic usage
from llmling import RuntimeConfig
from mcp_server_llmling import LLMLingServer
async def main() -> None:
async with RuntimeConfig.open(config) as runtime:
server = LLMLingServer(runtime, enable_injection=True)
await server.start()
asyncio.run(main())
2. Using Custom Transport
from llmling import RuntimeConfig
from mcp_server_llmling import LLMLingServer
async def main() -> None:
async with RuntimeConfig.open(config) as runtime:
server = LLMLingServer(
config,
transport="sse",
transport_options={
"host": "localhost",
"port": 8000,
"cors_origins": ["http://localhost:3000"]
}
)
await server.start()
asyncio.run(main())
3. Resource Configuration
resources:
python_code:
type: path
path: "./src/**/*.py"
watch:
enabled: true
patterns:
- "*.py"
- "!**/__pycache__/**"
api_docs:
type: text
content: |
API Documentation
================
...
4. Tool Configuration
tools:
analyze_code:
import_path: "mymodule.tools.analyze_code"
description: "Analyze Python code structure"
toolsets:
api:
type: openapi
spec: "https://api.example.com/openapi.json"
namespace: "api"
Server Configuration
The server is configured through a YAML file with the following sections:
global_settings:
timeout: 30
max_retries: 3
log_level: "INFO"
requirements: []
pip_index_url: null
extra_paths: []
resources:
# Resource definitions...
tools:
# Tool definitions...
toolsets:
# Toolset definitions...
prompts:
# Prompt definitions...
MCP Protocol
The server implements the MCP protocol which supports:
-
Resource Operations
- List available resources
- Read resource content
- Watch for resource changes
-
Tool Operations
- List available tools
- Execute tools with parameters
- Get tool schemas
-
Prompt Operations
- List available prompts
- Get formatted prompts
- Get completions for prompt arguments
-
Notifications
- Resource changes
- Tool/prompt list updates
- Progress updates
- Log messages
相关推荐
Confidential guide on numerology and astrology, based of GG33 Public information
Professional Flask/SQLAlchemy code guide. Follow: https://x.com/navid_re
A geek-themed horoscope generator blending Bitcoin prices, tech jargon, and astrological whimsy.
PR Professional: Guiding You to Get Media Placements and Publicity Quickly and Effectively
Découvrez la collection la plus complète et la plus à jour de serveurs MCP sur le marché. Ce référentiel sert de centre centralisé, offrant un vaste catalogue de serveurs MCP open-source et propriétaires, avec des fonctionnalités, des liens de documentation et des contributeurs.
Manipulation basée sur Micropython I2C de l'exposition GPIO de la série MCP, dérivée d'Adafruit_MCP230XX
Une passerelle API unifiée pour intégrer plusieurs API d'explorateur de blockchain de type étherscan avec la prise en charge du protocole de contexte modèle (MCP) pour les assistants d'IA.
Miroir dehttps: //github.com/suhail-ak-s/mcp-typeseense-server
本项目是一个钉钉 MCP (Protocole de connecteur de message) 服务 , 提供了与钉钉企业应用交互的 API 接口。项目基于 Go 语言开发 , 支持员工信息查询和消息发送等功能。
Reviews

user_5OruX6PG
I've been using the mcp-server-llmling by phil65 for a while now, and it's truly impressive. The seamless integration and robust features have greatly enhanced my workflow. It's reliable, efficient, and the community support is fantastic. Highly recommend checking it out on GitHub!