Cover image
Try Now
2025-04-03

一个模型上下文协议(MCP)服务器,使AI助手可以通过标准化接口查询和分析Prometheus指标。

3 years

Works with Finder

2

Github Watches

5

Github Forks

27

Github Stars

Prometheus MCP Server

A Model Context Protocol (MCP) server for Prometheus.

This provides access to your Prometheus metrics and queries through standardized MCP interfaces, allowing AI assistants to execute PromQL queries and analyze your metrics data.

Features

  • Execute PromQL queries against Prometheus

  • Discover and explore metrics

    • List available metrics
    • Get metadata for specific metrics
    • View instant query results
    • View range query results with different step intervals
  • Authentication support

    • Basic auth from environment variables
    • Bearer token auth from environment variables
  • Docker containerization support

  • Provide interactive tools for AI assistants

The list of tools is configurable, so you can choose which tools you want to make available to the MCP client. This is useful if you don't use certain functionality or if you don't want to take up too much of the context window.

Usage

  1. Ensure your Prometheus server is accessible from the environment where you'll run this MCP server.

  2. Configure the environment variables for your Prometheus server, either through a .env file or system environment variables:

# Required: Prometheus configuration
PROMETHEUS_URL=http://your-prometheus-server:9090

# Optional: Authentication credentials (if needed)
# Choose one of the following authentication methods if required:

# For basic auth
PROMETHEUS_USERNAME=your_username
PROMETHEUS_PASSWORD=your_password

# For bearer token auth
PROMETHEUS_TOKEN=your_token
  1. Add the server configuration to your client configuration file. For example, for Claude Desktop:
{
  "mcpServers": {
    "prometheus": {
      "command": "uv",
      "args": [
        "--directory",
        "<full path to prometheus-mcp-server directory>",
        "run",
        "src/prometheus_mcp_server/main.py"
      ],
      "env": {
        "PROMETHEUS_URL": "http://your-prometheus-server:9090",
        "PROMETHEUS_USERNAME": "your_username",
        "PROMETHEUS_PASSWORD": "your_password"
      }
    }
  }
}

Note: if you see Error: spawn uv ENOENT in Claude Desktop, you may need to specify the full path to uv or set the environment variable NO_UV=1 in the configuration.

Docker Usage

This project includes Docker support for easy deployment and isolation.

Building the Docker Image

Build the Docker image using:

docker build -t prometheus-mcp-server .

Running with Docker

You can run the server using Docker in several ways:

Using docker run directly:

docker run -it --rm \
  -e PROMETHEUS_URL=http://your-prometheus-server:9090 \
  -e PROMETHEUS_USERNAME=your_username \
  -e PROMETHEUS_PASSWORD=your_password \
  prometheus-mcp-server

Using docker-compose:

Create a .env file with your Prometheus credentials and then run:

docker-compose up

Running with Docker in Claude Desktop

To use the containerized server with Claude Desktop, update the configuration to use Docker with the environment variables:

{
  "mcpServers": {
    "prometheus": {
      "command": "docker",
      "args": [
        "run",
        "--rm",
        "-i",
        "-e", "PROMETHEUS_URL",
        "-e", "PROMETHEUS_USERNAME",
        "-e", "PROMETHEUS_PASSWORD",
        "prometheus-mcp-server"
      ],
      "env": {
        "PROMETHEUS_URL": "http://your-prometheus-server:9090",
        "PROMETHEUS_USERNAME": "your_username",
        "PROMETHEUS_PASSWORD": "your_password"
      }
    }
  }
}

This configuration passes the environment variables from Claude Desktop to the Docker container by using the -e flag with just the variable name, and providing the actual values in the env object.

Note about Docker implementation: The Docker setup has been updated to match the structure of the chess-mcp project, which has been proven to work correctly with Claude. The new implementation uses a multi-stage build process and runs the entry point script directly without an intermediary shell script. This approach ensures proper handling of stdin/stdout for MCP communication.

Development

Contributions are welcome! Please open an issue or submit a pull request if you have any suggestions or improvements.

This project uses uv to manage dependencies. Install uv following the instructions for your platform:

curl -LsSf https://astral.sh/uv/install.sh | sh

You can then create a virtual environment and install the dependencies with:

uv venv
source .venv/bin/activate  # On Unix/macOS
.venv\Scripts\activate     # On Windows
uv pip install -e .

Project Structure

The project has been organized with a src directory structure:

prometheus-mcp-server/
├── src/
│   └── prometheus_mcp_server/
│       ├── __init__.py      # Package initialization
│       ├── server.py        # MCP server implementation
│       ├── main.py          # Main application logic
├── Dockerfile               # Docker configuration
├── docker-compose.yml       # Docker Compose configuration
├── .dockerignore            # Docker ignore file
├── pyproject.toml           # Project configuration
└── README.md                # This file

Testing

The project includes a comprehensive test suite that ensures functionality and helps prevent regressions.

Run the tests with pytest:

# Install development dependencies
uv pip install -e ".[dev]"

# Run the tests
pytest

# Run with coverage report
pytest --cov=src --cov-report=term-missing

Tests are organized into:

  • Configuration validation tests
  • Server functionality tests
  • Error handling tests
  • Main application tests

When adding new features, please also add corresponding tests.

Tools

Tool Category Description
execute_query Query Execute a PromQL instant query against Prometheus
execute_range_query Query Execute a PromQL range query with start time, end time, and step interval
list_metrics Discovery List all available metrics in Prometheus
get_metric_metadata Discovery Get metadata for a specific metric
get_targets Discovery Get information about all scrape targets

License

MIT


相关推荐

  • NiKole Maxwell
  • I craft unique cereal names, stories, and ridiculously cute Cereal Baby images.

  • Joshua Armstrong
  • Confidential guide on numerology and astrology, based of GG33 Public information

  • https://suefel.com
  • Latest advice and best practices for custom GPT development.

  • Callycode Limited
  • A geek-themed horoscope generator blending Bitcoin prices, tech jargon, and astrological whimsy.

  • Alexandru Strujac
  • Efficient thumbnail creator for YouTube videos

  • Emmet Halm
  • Converts Figma frames into front-end code for various mobile frameworks.

  • Beniyam Berhanu
  • Therapist adept at identifying core issues and offering practical advice with images.

  • Khalid kalib
  • Write professional emails

  • INFOLAB OPERATIONS 2
  • A medical specialist offering assistance grounded in clinical guidelines. Disclaimer: This is intended for research and is NOT safe for clinical use!

  • Elijah Ng Shi Yi
  • Advanced software engineer GPT that excels through nailing the basics.

  • apappascs
  • 发现市场上最全面,最新的MCP服务器集合。该存储库充当集中式枢纽,提供了广泛的开源和专有MCP服务器目录,并提供功能,文档链接和贡献者。

  • ShrimpingIt
  • MCP系列GPIO Expander的基于Micropython I2C的操作,源自ADAFRUIT_MCP230XX

  • huahuayu
  • 统一的API网关,用于将多个Etherscan样区块链Explorer API与对AI助手的模型上下文协议(MCP)支持。

  • deemkeen
  • 用电源组合控制您的MBOT2:MQTT+MCP+LLM

  • jae-jae
  • MCP服务器使用剧作《无头浏览器》获取网页内容。

  • HiveNexus
  • 一个适用于中小型团队的AI聊天机器人,支持DeepSeek,Open AI,Claude和Gemini等车型。 专为中小团队设计的ai聊天应用,支持deepSeek,打开ai,claude,双子座等模型。

  • zhaoyunxing92
  • MCP(消息连接器协议)服务

    Reviews

    3 (1)
    Avatar
    user_he0trZIa
    2025-04-17

    I've been using prometheus-mcp-server by pab1it0 and it's truly impressive. It's user-friendly and integrates seamlessly with my existing infrastructure. The setup was straightforward thanks to the comprehensive documentation. A must-have for anyone looking to enhance their monitoring capabilities. Highly recommend checking it out at https://github.com/pab1it0/prometheus-mcp-server.