Cover image
Try Now
2025-04-15

一个模型上下文协议(MCP)服务器,使AI助手可以通过标准化接口查询和分析Azure Data Explorer数据库。

3 years

Works with Finder

1

Github Watches

8

Github Forks

22

Github Stars

Azure Data Explorer MCP Server

A Model Context Protocol (MCP) server for Azure Data Explorer/Eventhouse in Microsoft Fabric.

This provides access to your Azure Data Explorer/Eventhouse clusters and databases through standardized MCP interfaces, allowing AI assistants to execute KQL queries and explore your data.

Features

  • Execute KQL queries against Azure Data Explorer

  • Discover and explore database resources

    • List tables in the configured database
    • View table schemas
    • Sample data from tables
    • Get table statistics/details
  • Authentication support

    • Token credential support (Azure CLI, MSI, etc.)
  • Docker containerization support

  • Provide interactive tools for AI assistants

The list of tools is configurable, so you can choose which tools you want to make available to the MCP client. This is useful if you don't use certain functionality or if you don't want to take up too much of the context window.

Usage

  1. Login to your Azure account which has the permission to the ADX cluster using Azure CLI.

  2. Configure the environment variables for your ADX cluster, either through a .env file or system environment variables:

# Required: Azure Data Explorer configuration
ADX_CLUSTER_URL=https://yourcluster.region.kusto.windows.net
ADX_DATABASE=your_database
  1. Add the server configuration to your client configuration file. For example, for Claude Desktop:
{
  "mcpServers": {
    "adx": {
      "command": "uv",
      "args": [
        "--directory",
        "<full path to adx-mcp-server directory>",
        "run",
        "src/adx_mcp_server/main.py"
      ],
      "env": {
        "ADX_CLUSTER_URL": "https://yourcluster.region.kusto.windows.net",
        "ADX_DATABASE": "your_database"
      }
    }
  }
}

Note: if you see Error: spawn uv ENOENT in Claude Desktop, you may need to specify the full path to uv or set the environment variable NO_UV=1 in the configuration.

Docker Usage

This project includes Docker support for easy deployment and isolation.

Building the Docker Image

Build the Docker image using:

docker build -t adx-mcp-server .

Running with Docker

You can run the server using Docker in several ways:

Using docker run directly:

docker run -it --rm \
  -e ADX_CLUSTER_URL=https://yourcluster.region.kusto.windows.net \
  -e ADX_DATABASE=your_database \
  adx-mcp-server

Using docker-compose:

Create a .env file with your Azure Data Explorer credentials and then run:

docker-compose up

Running with Docker in Claude Desktop

To use the containerized server with Claude Desktop, update the configuration to use Docker with the environment variables:

{
  "mcpServers": {
    "adx": {
      "command": "docker",
      "args": [
        "run",
        "--rm",
        "-i",
        "-e", "ADX_CLUSTER_URL",
        "-e", "ADX_DATABASE",
        "adx-mcp-server"
      ],
      "env": {
        "ADX_CLUSTER_URL": "https://yourcluster.region.kusto.windows.net",
        "ADX_DATABASE": "your_database"
      }
    }
  }
}

This configuration passes the environment variables from Claude Desktop to the Docker container by using the -e flag with just the variable name, and providing the actual values in the env object.

Development

Contributions are welcome! Please open an issue or submit a pull request if you have any suggestions or improvements.

This project uses uv to manage dependencies. Install uv following the instructions for your platform:

curl -LsSf https://astral.sh/uv/install.sh | sh

You can then create a virtual environment and install the dependencies with:

uv venv
source .venv/bin/activate  # On Unix/macOS
.venv\Scripts\activate     # On Windows
uv pip install -e .

Project Structure

The project has been organized with a src directory structure:

adx-mcp-server/
├── src/
│   └── adx_mcp_server/
│       ├── __init__.py      # Package initialization
│       ├── server.py        # MCP server implementation
│       ├── main.py          # Main application logic
├── Dockerfile               # Docker configuration
├── docker-compose.yml       # Docker Compose configuration
├── .dockerignore            # Docker ignore file
├── pyproject.toml           # Project configuration
└── README.md                # This file

Testing

The project includes a comprehensive test suite that ensures functionality and helps prevent regressions.

Run the tests with pytest:

# Install development dependencies
uv pip install -e ".[dev]"

# Run the tests
pytest

# Run with coverage report
pytest --cov=src --cov-report=term-missing

Tests are organized into:

  • Configuration validation tests
  • Server functionality tests
  • Error handling tests
  • Main application tests

When adding new features, please also add corresponding tests.

Tools

Tool Category Description
execute_query Query Execute a KQL query against Azure Data Explorer
list_tables Discovery List all tables in the configured database
get_table_schema Discovery Get the schema for a specific table
sample_table_data Discovery Get sample data from a table with optional sample size

License

MIT


相关推荐

  • NiKole Maxwell
  • I craft unique cereal names, stories, and ridiculously cute Cereal Baby images.

  • Bora Yalcin
  • Evaluator for marketplace product descriptions, checks for relevancy and keyword stuffing.

  • Joshua Armstrong
  • Confidential guide on numerology and astrology, based of GG33 Public information

  • https://suefel.com
  • Latest advice and best practices for custom GPT development.

  • Alexandru Strujac
  • Efficient thumbnail creator for YouTube videos

  • Callycode Limited
  • A geek-themed horoscope generator blending Bitcoin prices, tech jargon, and astrological whimsy.

  • Emmet Halm
  • Converts Figma frames into front-end code for various mobile frameworks.

  • Khalid kalib
  • Write professional emails

  • Beniyam Berhanu
  • Therapist adept at identifying core issues and offering practical advice with images.

  • Elijah Ng Shi Yi
  • Advanced software engineer GPT that excels through nailing the basics.

  • apappascs
  • 发现市场上最全面,最新的MCP服务器集合。该存储库充当集中式枢纽,提供了广泛的开源和专有MCP服务器目录,并提供功能,文档链接和贡献者。

  • ShrimpingIt
  • MCP系列GPIO Expander的基于Micropython I2C的操作,源自ADAFRUIT_MCP230XX

  • OffchainLabs
  • 进行以太坊的实施

  • huahuayu
  • 统一的API网关,用于将多个Etherscan样区块链Explorer API与对AI助手的模型上下文协议(MCP)支持。

  • deemkeen
  • 用电源组合控制您的MBOT2:MQTT+MCP+LLM

    Reviews

    4 (1)
    Avatar
    user_nSYuvObn
    2025-04-16

    As a dedicated user of the MarineTraffic MCP Server by Cyreslab-AI, I'm thoroughly impressed with its performance and reliability. The seamless integration of marine traffic data and easy-to-navigate interface make tracking vessels and optimizing maritime operations simpler than ever. Highly recommend for anyone in the maritime industry!