Confidential guide on numerology and astrology, based of GG33 Public information

Deep-Forearch-MCP
3 years
Works with Finder
1
Github Watches
7
Github Forks
66
Github Stars
Open Deep Research MCP Server
An AI-powered research assistant that performs deep, iterative research on any topic. It combines search engines, web scraping, and AI to explore topics in depth and generate comprehensive reports. Available as a Model Context Protocol (MCP) tool or standalone CLI. Look at exampleout.md to see what a report might look like.
Quick Start
- Clone and install:
git clone https://github.com/Ozamatash/deep-research
cd deep-research
npm install
- Set up environment in
.env.local
:
# Copy the example environment file
cp .env.example .env.local
- Build:
# Build the server
npm run build
- Run the cli version:
npm run start "Your research query here"
- Test MCP Server with Claude Desktop:
Follow the guide thats at the bottom of server quickstart to add the server to Claude Desktop:
https://modelcontextprotocol.io/quickstart/server
Features
- Performs deep, iterative research by generating targeted search queries
- Controls research scope with depth (how deep) and breadth (how wide) parameters
- Evaluates source reliability with detailed scoring (0-1) and reasoning
- Prioritizes high-reliability sources (≥0.7) and verifies less reliable information
- Generates follow-up questions to better understand research needs
- Produces detailed markdown reports with findings, sources, and reliability assessments
- Available as a Model Context Protocol (MCP) tool for AI agents
- For now MCP version doesn't ask follow up questions
How It Works
flowchart TB
subgraph Input
Q[User Query]
B[Breadth Parameter]
D[Depth Parameter]
FQ[Feedback Questions]
end
subgraph Research[Deep Research]
direction TB
SQ[Generate SERP Queries]
SR[Search]
RE[Source Reliability Evaluation]
PR[Process Results]
end
subgraph Results[Research Output]
direction TB
L((Learnings with
Reliability Scores))
SM((Source Metadata))
ND((Next Directions:
Prior Goals,
New Questions))
end
%% Main Flow
Q & FQ --> CQ[Combined Query]
CQ & B & D --> SQ
SQ --> SR
SR --> RE
RE --> PR
%% Results Flow
PR --> L
PR --> SM
PR --> ND
%% Depth Decision and Recursion
L & ND --> DP{depth > 0?}
DP -->|Yes| SQ
%% Final Output
DP -->|No| MR[Markdown Report]
%% Styling
classDef input fill:#7bed9f,stroke:#2ed573,color:black
classDef process fill:#70a1ff,stroke:#1e90ff,color:black
classDef output fill:#ff4757,stroke:#ff6b81,color:black
classDef results fill:#a8e6cf,stroke:#3b7a57,color:black,width:150px,height:150px
class Q,B,D,FQ input
class SQ,SR,RE,PR process
class MR output
class L,SM,ND results
Advanced Setup
Using Local Firecrawl (Free Option)
Instead of using the Firecrawl API, you can run a local instance. You can use the official repo or my fork which uses searXNG as the search backend to avoid using a searchapi key:
- Set up local Firecrawl:
git clone https://github.com/Ozamatash/localfirecrawl
cd localfirecrawl
# Follow setup in localfirecrawl README
- Update
.env.local
:
FIRECRAWL_BASE_URL="http://localhost:3002"
Optional: Observability
Add observability to track research flows, queries, and results using Langfuse:
# Add to .env.local
LANGFUSE_PUBLIC_KEY="your_langfuse_public_key"
LANGFUSE_SECRET_KEY="your_langfuse_secret_key"
The app works normally without observability if no Langfuse keys are provided.
License
MIT License
相关推荐
Converts Figma frames into front-end code for various mobile frameworks.
Advanced software engineer GPT that excels through nailing the basics.
I find academic articles and books for research and literature reviews.
Embark on a thrilling diplomatic quest across a galaxy on the brink of war. Navigate complex politics and alien cultures to forge peace and avert catastrophe in this immersive interstellar adventure.
Take an adjectivised noun, and create images making it progressively more adjective!
Entdecken Sie die umfassendste und aktuellste Sammlung von MCP-Servern auf dem Markt. Dieses Repository dient als zentraler Hub und bietet einen umfangreichen Katalog von Open-Source- und Proprietary MCP-Servern mit Funktionen, Dokumentationslinks und Mitwirkenden.
Ein leistungsstarkes Neovim -Plugin für die Verwaltung von MCP -Servern (Modellkontextprotokoll)
MCP -Server für den Fetch -Webseiteninhalt mit dem Headless -Browser von Dramatikern.
Brücke zwischen Ollama und MCP -Servern und ermöglicht es lokalen LLMs, Modellkontextprotokoll -Tools zu verwenden
🔥 1Panel bietet eine intuitive Weboberfläche und einen MCP -Server, um Websites, Dateien, Container, Datenbanken und LLMs auf einem Linux -Server zu verwalten.
Die All-in-One-Desktop & Docker-AI-Anwendung mit integriertem Lappen, AI-Agenten, No-Code-Agent Builder, MCP-Kompatibilität und vielem mehr.
Reviews

user_fheT0rW7
As a dedicated user of the deep-research-mcp, I am consistently impressed by its robust capabilities and user-friendly interface. Ozamatash has truly crafted a tool that significantly enhances my research efficiency. The seamless integration and extensive features offered by the deep-research-mcp make it an indispensable asset for any researcher. Highly recommended!