Cover image
Try Now
2025-03-31

Apache Dolphinscheduler的模型上下文协议(MCP)服务器。这提供了对Apache Dolphinshcheduler Restful API V1实例和周围生态系统的访问。

3 years

Works with Finder

1

Github Watches

1

Github Forks

3

Github Stars

DolphinScheduler MCP Server

A Model Context Protocol (MCP) server for Apache DolphinScheduler, allowing AI agents to interact with DolphinScheduler through a standardized protocol.

Overview

DolphinScheduler MCP provides a FastMCP-based server that exposes DolphinScheduler's REST API as a collection of tools that can be used by AI agents. The server acts as a bridge between AI models and DolphinScheduler, enabling AI-driven workflow management.

Features

  • Full API coverage of DolphinScheduler functionality
  • Standardized tool interfaces following the Model Context Protocol
  • Easy configuration through environment variables or command-line arguments
  • Comprehensive tool documentation

Installation

pip install dolphinscheduler-mcp

Configuration

Environment Variables

  • DOLPHINSCHEDULER_API_URL: URL for the DolphinScheduler API (default: http://localhost:12345/dolphinscheduler)
  • DOLPHINSCHEDULER_API_KEY: API token for authentication with the DolphinScheduler API
  • DOLPHINSCHEDULER_MCP_HOST: Host to bind the MCP server (default: 0.0.0.0)
  • DOLPHINSCHEDULER_MCP_PORT: Port to bind the MCP server (default: 8089)
  • DOLPHINSCHEDULER_MCP_LOG_LEVEL: Logging level (default: INFO)

Usage

Command Line

Start the server using the command-line interface:

ds-mcp --host 0.0.0.0 --port 8089

Python API

from dolphinscheduler_mcp.server import run_server

# Start the server
run_server(host="0.0.0.0", port=8089)

Available Tools

The DolphinScheduler MCP Server provides tools for:

  • Project Management
  • Process Definition Management
  • Process Instance Management
  • Task Definition Management
  • Scheduling Management
  • Resource Management
  • Data Source Management
  • Alert Group Management
  • Alert Plugin Management
  • Worker Group Management
  • Tenant Management
  • User Management
  • System Status Monitoring

Example Client Usage

from mcp_client import MCPClient

# Connect to the MCP server
client = MCPClient("http://localhost:8089/mcp")

# Get a list of projects
response = await client.invoke_tool("get-project-list")

# Create a new project
response = await client.invoke_tool(
    "create-project", 
    {"name": "My AI Project", "description": "Project created by AI"}
)

License

Apache License 2.0

相关推荐

  • NiKole Maxwell
  • I craft unique cereal names, stories, and ridiculously cute Cereal Baby images.

  • Joshua Armstrong
  • Confidential guide on numerology and astrology, based of GG33 Public information

  • https://suefel.com
  • Latest advice and best practices for custom GPT development.

  • Emmet Halm
  • Converts Figma frames into front-end code for various mobile frameworks.

  • Elijah Ng Shi Yi
  • Advanced software engineer GPT that excels through nailing the basics.

  • Yasir Eryilmaz
  • AI scriptwriting assistant for short, engaging video content.

  • Daren White
  • A supportive coach for mastering all Spanish tenses.

  • J. DE HARO OLLE
  • Especialista en juegos de palabras en varios idiomas.

  • albert tan
  • Japanese education, creating tailored learning experiences.

  • https://maiplestudio.com
  • Find Exhibitors, Speakers and more

  • Alexandru Strujac
  • Efficient thumbnail creator for YouTube videos

  • apappascs
  • 发现市场上最全面,最新的MCP服务器集合。该存储库充当集中式枢纽,提供了广泛的开源和专有MCP服务器目录,并提供功能,文档链接和贡献者。

  • ShrimpingIt
  • MCP系列GPIO Expander的基于Micropython I2C的操作,源自ADAFRUIT_MCP230XX

  • pontusab
  • 光标与风浪冲浪社区,查找规则和MCP

  • rahulc0dy
  • 测试您的MCP服务器。

  • av
  • 毫不费力地使用一个命令运行LLM后端,API,前端和服务。

  • 1Panel-dev
  • 🔥1Panel提供了直观的Web接口和MCP服务器,用于在Linux服务器上管理网站,文件,容器,数据库和LLMS。

  • GeyserMC
  • 与Minecraft客户端/服务器通信的库。

  • Mintplex-Labs
  • 带有内置抹布,AI代理,无代理构建器,MCP兼容性等的多合一桌面和Docker AI应用程序。

  • awslabs
  • AWS MCP服务器 - 将AWS最佳实践直接带入您的开发工作流程的专门MCP服务器

    Reviews

    4 (1)
    Avatar
    user_v2h6PfLs
    2025-04-18

    I've been an avid user of dolphinscheduler-mcp by ocean-zhc, and it has significantly streamlined my workflow. The intuitive interface and robust features make complex data scheduling a breeze. Highly recommend checking it out on GitHub if you're in need of a reliable data scheduling tool. Great job, ocean-zhc!