 
            
            
            
            
        Ollama MCP Server
🚀 A powerful bridge between Ollama and the Model Context Protocol (MCP), enabling seamless integration of Ollama's local LLM capabilities into your MCP-powered applications.
🌟 Features
Complete Ollama Integration
- Full API Coverage: Access all essential Ollama functionality through a clean MCP interface
- OpenAI-Compatible Chat: Drop-in replacement for OpenAI's chat completion API
- Local LLM Power: Run AI models locally with full control and privacy
Core Capabilities
- 
🔄 Model Management - Pull models from registries
- Push models to registries
- List available models
- Create custom models from Modelfiles
- Copy and remove models
 
- 
🤖 Model Execution - Run models with customizable prompts
- Chat completion API with system/user/assistant roles
- Configurable parameters (temperature, timeout)
- Raw mode support for direct responses
 
- 
🛠 Server Control - Start and manage Ollama server
- View detailed model information
- Error handling and timeout management
 
🚀 Getting Started
Prerequisites
- Ollama installed on your system
- Node.js and npm/pnpm
Installation
- Install dependencies:
pnpm install
- Build the server:
pnpm run build
Configuration
Add the server to your MCP configuration:
For Claude Desktop:
MacOS: ~/Library/Application Support/Claude/claude_desktop_config.json
Windows: %APPDATA%/Claude/claude_desktop_config.json
{
  "mcpServers": {
    "ollama": {
      "command": "node",
      "args": ["/path/to/ollama-server/build/index.js"],
      "env": {
        "OLLAMA_HOST": "http://127.0.0.1:11434"  // Optional: customize Ollama API endpoint
      }
    }
  }
}
🛠 Usage Examples
Pull and Run a Model
// Pull a model
await mcp.use_mcp_tool({
  server_name: "ollama",
  tool_name: "pull",
  arguments: {
    name: "llama2"
  }
});
// Run the model
await mcp.use_mcp_tool({
  server_name: "ollama",
  tool_name: "run",
  arguments: {
    name: "llama2",
    prompt: "Explain quantum computing in simple terms"
  }
});
Chat Completion (OpenAI-compatible)
await mcp.use_mcp_tool({
  server_name: "ollama",
  tool_name: "chat_completion",
  arguments: {
    model: "llama2",
    messages: [
      {
        role: "system",
        content: "You are a helpful assistant."
      },
      {
        role: "user",
        content: "What is the meaning of life?"
      }
    ],
    temperature: 0.7
  }
});
Create Custom Model
await mcp.use_mcp_tool({
  server_name: "ollama",
  tool_name: "create",
  arguments: {
    name: "custom-model",
    modelfile: "./path/to/Modelfile"
  }
});
🔧 Advanced Configuration
- 
OLLAMA_HOST: Configure custom Ollama API endpoint (default: http://127.0.0.1:11434)
- Timeout settings for model execution (default: 60 seconds)
- Temperature control for response randomness (0-2 range)
🤝 Contributing
Contributions are welcome! Feel free to:
- Report bugs
- Suggest new features
- Submit pull requests
📝 License
MIT License - feel free to use in your own projects!
Built with ❤️ for the MCP ecosystem
相关推荐
Confidential guide on numerology and astrology, based of GG33 Public information
Emulating Dr. Jordan B. Peterson's style in providing life advice and insights.
Your go-to expert in the Rust ecosystem, specializing in precise code interpretation, up-to-date crate version checking, and in-depth source code analysis. I offer accurate, context-aware insights for all your Rust programming questions.
Take an adjectivised noun, and create images making it progressively more adjective!
Reviews
 
                                    user_WnIhztvv
Ollama-mcp by NightTrek is an outstanding tool for MCP application enthusiasts. Its seamless integration, user-friendly interface, and reliable performance make it a must-have. The open-source nature on GitHub ensures it remains updated and customizable. Highly recommend giving it a try!
 
     
                                                             
                                                             
                                                             
                                                             
                                                             
                                                             
                                                             
                                                             
                                                            