MCP cover image
DeepSeek-Clinking-Claude-3.5-Sonnet-Cline-MCP logo
Private

DeepSeek-Clinking-Claude-3.5-Sonnet-Cline-MCP

See in Github
2025-02-02

🧠MCP服务器实现RAT(检索增强思维) - 将DeepSeek的推理与GPT -4/Claude/Mistral响应相结合,维护交互之间的对话上下文。

1

Github Watches

21

Github Forks

104

Github Stars

Deepseek-Thinking-Claude-3.5-Sonnet-CLINE-MCP

smithery badge

A Model Context Protocol (MCP) server that combines DeepSeek R1's reasoning capabilities with Claude 3.5 Sonnet's response generation through OpenRouter. This implementation uses a two-stage process where DeepSeek provides structured reasoning which is then incorporated into Claude's response generation.

Features

  • Two-Stage Processing:

    • Uses DeepSeek R1 for initial reasoning (50k character context)
    • Uses Claude 3.5 Sonnet for final response (600k character context)
    • Both models accessed through OpenRouter's unified API
    • Injects DeepSeek's reasoning tokens into Claude's context
  • Smart Conversation Management:

    • Detects active conversations using file modification times
    • Handles multiple concurrent conversations
    • Filters out ended conversations automatically
    • Supports context clearing when needed
  • Optimized Parameters:

    • Model-specific context limits:
      • DeepSeek: 50,000 characters for focused reasoning
      • Claude: 600,000 characters for comprehensive responses
    • Recommended settings:
      • temperature: 0.7 for balanced creativity
      • top_p: 1.0 for full probability distribution
      • repetition_penalty: 1.0 to prevent repetition

Installation

Installing via Smithery

To install DeepSeek Thinking with Claude 3.5 Sonnet for Claude Desktop automatically via Smithery:

npx -y @smithery/cli install @newideas99/Deepseek-Thinking-Claude-3.5-Sonnet-CLINE-MCP --client claude

Manual Installation

  1. Clone the repository:
git clone https://github.com/yourusername/Deepseek-Thinking-Claude-3.5-Sonnet-CLINE-MCP.git
cd Deepseek-Thinking-Claude-3.5-Sonnet-CLINE-MCP
  1. Install dependencies:
npm install
  1. Create a .env file with your OpenRouter API key:
# Required: OpenRouter API key for both DeepSeek and Claude models
OPENROUTER_API_KEY=your_openrouter_api_key_here

# Optional: Model configuration (defaults shown below)
DEEPSEEK_MODEL=deepseek/deepseek-r1  # DeepSeek model for reasoning
CLAUDE_MODEL=anthropic/claude-3.5-sonnet:beta  # Claude model for responses
  1. Build the server:
npm run build

Usage with Cline

Add to your Cline MCP settings (usually in ~/.vscode/globalStorage/saoudrizwan.claude-dev/settings/cline_mcp_settings.json):

{
  "mcpServers": {
    "deepseek-claude": {
      "command": "/path/to/node",
      "args": ["/path/to/Deepseek-Thinking-Claude-3.5-Sonnet-CLINE-MCP/build/index.js"],
      "env": {
        "OPENROUTER_API_KEY": "your_key_here"
      },
      "disabled": false,
      "autoApprove": []
    }
  }
}

Tool Usage

The server provides two tools for generating and monitoring responses:

generate_response

Main tool for generating responses with the following parameters:

{
  "prompt": string,           // Required: The question or prompt
  "showReasoning"?: boolean, // Optional: Show DeepSeek's reasoning process
  "clearContext"?: boolean,  // Optional: Clear conversation history
  "includeHistory"?: boolean // Optional: Include Cline conversation history
}

check_response_status

Tool for checking the status of a response generation task:

{
  "taskId": string  // Required: The task ID from generate_response
}

Response Polling

The server uses a polling mechanism to handle long-running requests:

  1. Initial Request:

    • generate_response returns immediately with a task ID
    • Response format: {"taskId": "uuid-here"}
  2. Status Checking:

    • Use check_response_status to poll the task status
    • Note: Responses can take up to 60 seconds to complete
    • Status progresses through: pending → reasoning → responding → complete

Example usage in Cline:

// Initial request
const result = await use_mcp_tool({
  server_name: "deepseek-claude",
  tool_name: "generate_response",
  arguments: {
    prompt: "What is quantum computing?",
    showReasoning: true
  }
});

// Get taskId from result
const taskId = JSON.parse(result.content[0].text).taskId;

// Poll for status (may need multiple checks over ~60 seconds)
const status = await use_mcp_tool({
  server_name: "deepseek-claude",
  tool_name: "check_response_status",
  arguments: { taskId }
});

// Example status response when complete:
{
  "status": "complete",
  "reasoning": "...",  // If showReasoning was true
  "response": "..."    // The final response
}

Development

For development with auto-rebuild:

npm run watch

How It Works

  1. Reasoning Stage (DeepSeek R1):

    • Uses OpenRouter's reasoning tokens feature
    • Prompt is modified to output 'done' while capturing reasoning
    • Reasoning is extracted from response metadata
  2. Response Stage (Claude 3.5 Sonnet):

    • Receives the original prompt and DeepSeek's reasoning
    • Generates final response incorporating the reasoning
    • Maintains conversation context and history

License

MIT License - See LICENSE file for details.

Credits

Based on the RAT (Retrieval Augmented Thinking) concept by Skirano, which enhances AI responses through structured reasoning and knowledge retrieval.

This implementation specifically combines DeepSeek R1's reasoning capabilities with Claude 3.5 Sonnet's response generation through OpenRouter's unified API.

相关推荐

  • https://suefel.com
  • Latest advice and best practices for custom GPT development.

  • Yusuf Emre Yeşilyurt
  • I find academic articles and books for research and literature reviews.

  • https://maiplestudio.com
  • Find Exhibitors, Speakers and more

  • Carlos Ferrin
  • Encuentra películas y series en plataformas de streaming.

  • Joshua Armstrong
  • Confidential guide on numerology and astrology, based of GG33 Public information

  • Emmet Halm
  • Converts Figma frames into front-end code for various mobile frameworks.

  • Elijah Ng Shi Yi
  • Advanced software engineer GPT that excels through nailing the basics.

  • Alexandru Strujac
  • Efficient thumbnail creator for YouTube videos

  • lumpenspace
  • Take an adjectivised noun, and create images making it progressively more adjective!

  • Lists Tailwind CSS classes in monospaced font

  • https://appia.in
  • Siri Shortcut Finder – your go-to place for discovering amazing Siri Shortcuts with ease

  • apappascs
  • 发现市场上最全面,最新的MCP服务器集合。该存储库充当集中式枢纽,提供了广泛的开源和专有MCP服务器目录,并提供功能,文档链接和贡献者。

  • ShrimpingIt
  • MCP系列GPIO Expander的基于Micropython I2C的操作,源自ADAFRUIT_MCP230XX

  • jae-jae
  • MCP服务器使用剧作《无头浏览器》获取网页内容。

  • ravitemer
  • 一个功能强大的Neovim插件,用于管理MCP(模型上下文协议)服务器

  • Mintplex-Labs
  • 带有内置抹布,AI代理,无代理构建器,MCP兼容性等的多合一桌面和Docker AI应用程序。

  • patruff
  • Ollama和MCP服务器之间的桥梁,使本地LLMS可以使用模型上下文协议工具

  • pontusab
  • 光标与风浪冲浪社区,查找规则和MCP

  • WangRongsheng
  • 🧑‍🚀 llm 资料总结(数据处理、模型训练、模型部署、 o1 模型、mcp 、小语言模型、视觉语言模型)|摘要世界上最好的LLM资源。

  • av
  • 毫不费力地使用一个命令运行LLM后端,API,前端和服务。

  • n8n-io
  • 具有本机AI功能的公平代码工作流程自动化平台。将视觉构建与自定义代码,自宿主或云相结合,400+集成。

    Reviews

    3 (1)
    Avatar
    user_uNRhOQn8
    2025-04-17

    I'm thoroughly impressed with the Deepseek-Thinking-Claude-3.5-Sonnet-CLINE-MCP by newideas99. It demonstrates remarkable performance and versatile application, making it an invaluable addition to my toolkit. The seamless integration and intuitive interface enhance productivity significantly. Highly recommend!