Cover image
Try Now
2025-04-14

一个简单的MCP服务器,用于ragflow的知识库。

3 years

Works with Finder

0

Github Watches

2

Github Forks

0

Github Stars

ragflow-knowledge-mcp-server

A simple MCP server of knowledge base for RAGFlow.

Supported RAGFlow versions:

  • 0.17.2

1. Available tools

1. Dynamic knowledge base searching tools

Enable dynamic knowledge base searching tools in config.yaml, see also Server configurations:

datasets:
  - dataset-id: 00000000000000000000000000000000
    search-tool-name: search_xxx_knowledge
    #search-tool-description: "Search knowledge about XXX(中文说明)."
    #search-tool-result: simple
    search-tool-description: "Search knowledge about XXX(中文说明). Results in JSON format, knowledge in the 'content' property."
    search-tool-result: json

2. list_knowledge_bases (default disabled)

Enable list_knowledge_bases tool in config.yaml:

list-bases-enabled: true
  • Default description: List knowledge bases.

  • Input properties:

    • page, str: The page number to list the bases for, optional, defaults to 1.
    • limit, str: The maximum number of knowledge bases to list, optional, defaults to 20.
    • timeout, int: Dynamic timeout parameter, enabled by timeout-param-enabled, optional, defaults to 60 seconds.

3. get_knowledge_base_info (default disabled)

Enable get_knowledge_base_info tool in config.yaml:

get-base-enabled: true
  • Default description: Get information of the specified knowledge base ID, results including the knowledge base name, description, and other information.

  • Input properties:

    • knowledge_base_id, str: The ID of the knowledge base to query.
    • timeout, int: Dynamic timeout parameter, enabled by timeout-param-enabled, optional, defaults to 60 seconds.

2. Install and run

2.1. Install using pip

# Uninstall the previous version
pip uninstall --yes ragflow-knowledge-mcp-server

pip install ragflow-knowledge-mcp-server --upgrade --force-reinstall --extra-index-url http://127.0.0.1:8081/repository/pypi-group/simple --trusted-host 127.0.0.1

2.2. Install from source

cd /path/to/project

pip install .

# Or install using pytools.sh
./pytools.sh reinstall

2.3. Run

export SIMP_LOGGER_LOG_FILE=/path/to/mcp.log
export SIMP_LOGGER_LOG_LEVEL=DEBUG

# Run server directly
ragflow-knowledge-mcp-server --config=/path/to/config.yaml

# Or run with python
python -m ragflow_knowledge_mcp_server --config=/path/to/config.yaml

# Or run with uv
uv run ragflow-knowledge-mcp-server --config=/path/to/config.yaml

2.4. Run with Docker or Docker Compose

  1. Docker

  2. Docker Compose

3. Server configurations

  • YAML:

Example configurations yaml, for full configuration, see MCPServerProperties.py:

server-name: ragflow-knowledge-base

default-base-url: http://127.0.0.1:9388/api/v1
default-api-key: ragflow-00000000000000000000000000000000

timeout: 60
timeout-param-enabled: false

# SSE
transport: sse # Defaults to stdio
sse-port: 41106

list-bases-enabled: false
get-base-enabled: false

datasets:
  - dataset-id: 00000000000000000000000000000000
    search-tool-name: search_xxx_knowledge
    search-tool-description: "Search knowledge about XXX(中文说明). Results in JSON format, knowledge in the 'content' property."

  - enabled: false
    id-param-enabled: true
    search-tool-name: search_knowledge
    search-tool-description: "Search knowledge from specified knowledge base('knowledge_base_id')."

Or configures the base URL and API key for each dataset and tools:

server-name: ragflow-knowledge-base

timeout: 60
timeout-param-enabled: false

# SSE
transport: sse # Defaults to stdio
sse-port: 41106

list-bases-enabled: false
list-bases-base-url: http://127.0.0.1:9388/api/v1
list-bases-api-key: ragflow-00000000000000000000000000000000

get-base-enabled: false

datasets:
  - dataset-id: 00000000000000000000000000000000
    base-url: http://127.0.0.1:9388/api/v1
    api-key: ragflow-00000000000000000000000000000000
    # Other properties...
  • Available environment variables:
Yaml Environment variable name Default value Description
RAGFLOW_KNOWLEDGE_MCP_SERVER_CONFIG config.yaml The config file path, also available in CLI option --config=/path/to/config.yaml.
default-base-url DEFAULT_RAGFLOW_KNOWLEDGE_BASE_URL - The default base URL for the knowledge base.
default-api-key DEFAULT_RAGFLOW_KNOWLEDGE_API_KEY - The default API key for the knowledge base.
server-name RAGFLOW_KNOWLEDGE_MCP_SERVER_NAME RAGFlow Knowledge Base The name of the MCP server.
transport RAGFLOW_KNOWLEDGE_MCP_SERVER_TRANSPORT stdio The transport type. Can be stdio or sse.
sse-transport-endpoint RAGFLOW_KNOWLEDGE_MCP_SERVER_SSE_TRANSPORT_ENDPOINT /messages/ The SSE transport endpoint.
sse-bind-host RAGFLOW_KNOWLEDGE_MCP_SERVER_SSE_BIND_HOST 0.0.0.0 The host to bind the SSE transport.
sse-port RAGFLOW_KNOWLEDGE_MCP_SERVER_SSE_PORT 41106 The port for the SSE transport.
sse-debug-enabled RAGFLOW_KNOWLEDGE_MCP_SERVER_SSE_DEBUG_ENABLED False Whether to enable debug mode for SSE.
timeout RAGFLOW_KNOWLEDGE_MCP_SERVER_TIMEOUT 60 The timeout for the server.
timeout-param-enabled RAGFLOW_KNOWLEDGE_MCP_SERVER_TIMEOUT_PARAM_ENABLED False Whether to enable the timeout parameter.
timeout-param-description RAGFLOW_KNOWLEDGE_MCP_SERVER_TIMEOUT_PARAM_DESCRIPTION The total timeout for one calling, in seconds, optional, defaults to {self.timeout} seconds. The description of the timeout parameter.
  • Available environment variables of simp-logger:
Variable name Default value Description
SIMP_LOGGER_LOG_FILE_ENABLED True Whether to enable logging to file.
SIMP_LOGGER_LOG_CONSOLE_ENABLED True Whether to enable logging to console.
SIMP_LOGGER_LOG_LEVEL INFO The log level.
SIMP_LOGGER_LOG_FILE ~/logs/simp-logger.log The log file path.
SIMP_LOGGER_LOG_PATTERN %(asctime)s %(levelname)s [%(threadName)s]: %(message)s The log pattern.
SIMP_LOGGER_LOG_MAX_BYTES 10485760 (10MB) The maximum size of the log file.
SIMP_LOGGER_LOG_BACKUP_COUNT 5 The number of backup files to keep.
SIMP_LOGGER_LOG_ROTATION_TYPE size The type of log rotation. Can be size or time.
SIMP_LOGGER_LOG_ROTATION_WHEN midnight The time of day to rotate the log file.
SIMP_LOGGER_LOG_ROTATION_INTERVAL 1 The interval for log rotation.
SIMP_LOGGER_LOG_CLEANUP_DISABLED False Whether to disable logger cleanup.

4. MCP configurations

4.1. SSE

Example endpoint: http://127.0.0.1:41106/sse

4.2. stdio

Simple command line:

uv run ragflow-knowledge-mcp-server --config=/path/to/config.yaml

JSON:

{
  "ragflow-knowledge-base": {
    "type": "stdio",
    "command": "uv",
    "args": [
      "run",
      "ragflow-knowledge-mcp-server",
      "--config=/path/to/config.yaml"
    ],
    "env": {
      "SIMP_LOGGER_LOG_CONSOLE_ENABLED": false,
      "SIMP_LOGGER_LOG_FILE": "/path/to/mcp.log",
      "SIMP_LOGGER_LOG_LEVEL": "DEBUG"
    }
  }
}

YAML:

ragflow-knowledge-base:
  type: stdio
  command: uv
  args:
    - run
    - ragflow-knowledge-mcp-server
    - "--config=/path/to/config.yaml"
  env:
    SIMP_LOGGER_LOG_CONSOLE_ENABLED: false
    SIMP_LOGGER_LOG_FILE: /path/to/mcp.log
    SIMP_LOGGER_LOG_LEVEL: DEBUG

相关推荐

  • av
  • 毫不费力地使用一个命令运行LLM后端,API,前端和服务。

  • 1Panel-dev
  • 🔥1Panel提供了直观的Web接口和MCP服务器,用于在Linux服务器上管理网站,文件,容器,数据库和LLMS。

  • WangRongsheng
  • 🧑‍🚀 llm 资料总结(数据处理、模型训练、模型部署、 o1 模型、mcp 、小语言模型、视觉语言模型)|摘要世界上最好的LLM资源。

  • rulego
  • ⛓️Rulego是一种轻巧,高性能,嵌入式,下一代组件编排规则引擎框架。

  • sigoden
  • 使用普通的bash/javascript/python函数轻松创建LLM工具和代理。

  • hkr04
  • 轻巧的C ++ MCP(模型上下文协议)SDK

  • RockChinQ
  • 😎简单易用、🧩丰富生态 -大模型原生即时通信机器人平台| 适配QQ / 微信(企业微信、个人微信) /飞书 /钉钉 / discord / telegram / slack等平台| 支持chatgpt,deepseek,dify,claude,基于LLM的即时消息机器人平台,支持Discord,Telegram,微信,Lark,Dingtalk,QQ,Slack

  • dmayboroda
  • 带有可配置容器的本地对话抹布

  • paulwing
  • 使用MCP服务创建的测试存储库

    Reviews

    2.9 (9)
    Avatar
    user_NxuE3umQ
    2025-04-23

    As a loyal user of ragflow-knowledge-mcp-server by lumerix7, I am thoroughly impressed by its seamless integration and robust performance. This server has significantly optimized our processes and provided a scalable solution for our knowledge management needs. A must-have for any team looking to streamline their operations!

    Avatar
    user_XIaokHf2
    2025-04-23

    I've been using the ragflow-knowledge-mcp-server developed by lumerix7 for a while now, and it has significantly improved my workflow. The integration is seamless, and the performance is top-notch. The server provides an efficient way to manage and process data, making it an essential tool for my application needs. Highly recommended!

    Avatar
    user_lQoviTIe
    2025-04-23

    As a devoted user of the ragflow-knowledge-mcp-server by lumerix7, I have to say this product has been a game-changer. It offers reliable knowledge management solutions seamlessly integrated into our existing infrastructure. The performance is top-notch and has drastically improved our workflow efficiency. Highly recommend this server for anyone looking to optimize their data handling and knowledge base management.

    Avatar
    user_k8P3FEn6
    2025-04-23

    As a dedicated user of the ragflow-knowledge-mcp-server by lumerix7, I am extremely impressed with its capabilities. The server seamlessly integrates with my MCP applications, providing reliable and efficient performance. Its robust architecture and user-friendly interface make it a standout choice for anyone in need of a powerful knowledge management system. Highly recommended!

    Avatar
    user_oXDLx5OS
    2025-04-23

    I've been using Ragflow Knowledge MCP Server by Lumerix7 and it has significantly streamlined my workflow. The server's seamless integration and intuitive interface make managing MCP applications incredibly efficient. Highly recommend it to anyone in need of a robust and reliable MCP server solution!

    Avatar
    user_B0fJMWcu
    2025-04-23

    As a dedicated user of ragflow-knowledge-mcp-server by lumerix7, I am impressed with its seamless integration and robust performance. It provides an excellent knowledge management system with user-friendly features. The detailed welcome information and easy-to-navigate start URL make onboarding simple. I highly recommend this product to anyone looking for a reliable MCP server solution.

    Avatar
    user_Tzisnwa3
    2025-04-23

    As a dedicated user of ragflow-knowledge-mcp-server by lumerix7, I am thoroughly impressed by its seamless integration and robust performance. This product has significantly enhanced my workflow efficiency and knowledge management capabilities. The setup was straightforward, and the user interface is intuitive. Overall, I highly recommend it to anyone looking for a reliable MCP server solution.

    Avatar
    user_uVxynary
    2025-04-23

    As a dedicated user of the ragflow-knowledge-mcp-server by Lumerix7, I am thoroughly impressed with its seamless integration and robust performance. It has significantly enhanced our knowledge management capabilities, making information retrieval quicker and more efficient. Highly recommended for any organization looking to streamline their MCP applications.

    Avatar
    user_BcdhUAuH
    2025-04-23

    As a dedicated user of the ragflow-knowledge-mcp-server by lumerix7, I can attest to its exceptional functionality and efficiency. The seamless integration and user-friendly interface make managing MCP processes incredibly straightforward. Highly recommended for anyone needing robust and reliable MCP support!