Knowledge-Base-MCP-Server
Dieser MCP -Server bietet Tools zum Auflisten und Abrufen von Inhalten aus verschiedenen Wissensbasis.
1
Github Watches
2
Github Forks
10
Github Stars
Knowledge Base MCP Server
This MCP server provides tools for listing and retrieving content from different knowledge bases.
Setup Instructions
These instructions assume you have Node.js and npm installed on your system.
Prerequisites
-
Clone the repository:
git clone <repository_url> cd knowledge-base-mcp-server -
Install dependencies:
npm install -
Configure environment variables:
- The server requires the
HUGGINGFACE_API_KEYenvironment variable to be set. This is the API key for the Hugging Face Inference API, which is used to generate embeddings for the knowledge base content. You can obtain a free API key from the Hugging Face website (https://huggingface.co/). - The server requires the
KNOWLEDGE_BASES_ROOT_DIRenvironment variable to be set. This variable specifies the directory where the knowledge base subdirectories are located. If you don't set this variable, it will default to$HOME/knowledge_bases, where$HOMEis the current user's home directory. - The server supports the
FAISS_INDEX_PATHenvironment variable to specify the path to the FAISS index. If not set, it will default to$HOME/knowledge_bases/.faiss. - The server supports the
HUGGINGFACE_MODEL_NAMEenvironment variable to specify the Hugging Face model to use for generating embeddings. If not set, it will default tosentence-transformers/all-MiniLM-L6-v2. - You can set these environment variables in your
.bashrcor.zshrcfile, or directly in the MCP settings.
- The server requires the
-
Build the server:
npm run build -
Add the server to the MCP settings:
- Edit the
cline_mcp_settings.jsonfile located at/home/jean/.vscode-server/data/User/globalStorage/saoudrizwan.claude-dev/settings/. - Add the following configuration to the
mcpServersobject:
"knowledge-base-mcp": { "command": "node", "args": [ "/path/to/knowledge-base-mcp-server/build/index.js" ], "disabled": false, "autoApprove": [], "env": { "KNOWLEDGE_BASES_ROOT_DIR": "/path/to/knowledge_bases", "HUGGINGFACE_API_KEY": "YOUR_HUGGINGFACE_API_KEY", }, "description": "Retrieves similar chunks from the knowledge base based on a query." },- Replace
/path/to/knowledge-base-mcp-serverwith the actual path to the server directory. - Replace
/path/to/knowledge_baseswith the actual path to the knowledge bases directory.
- Edit the
-
Create knowledge base directories:
- Create subdirectories within the
KNOWLEDGE_BASES_ROOT_DIRfor each knowledge base (e.g.,company,it_support,onboarding). - Place text files (e.g.,
.txt,.md) containing the knowledge base content within these subdirectories.
- Create subdirectories within the
- The server recursively reads all text files (e.g.,
.txt,.md) within the specified knowledge base subdirectories. - The server skips hidden files and directories (those starting with a
.). - For each file, the server calculates the SHA256 hash and stores it in a file with the same name in a hidden
.indexsubdirectory. This hash is used to determine if the file has been modified since the last indexing. - The file content is splitted into chunks using the
MarkdownTextSplitterfromlangchain/text_splitter. - The content of each chunk is then added to a FAISS index, which is used for similarity search.
- The FAISS index is automatically initialized when the server starts. It checks for changes in the knowledge base files and updates the index accordingly.
Usage
The server exposes two tools:
-
list_knowledge_bases: Lists the available knowledge bases. -
retrieve_knowledge: Retrieves similar chunks from the knowledge base based on a query. Optionally, if a knowledge base is specified, only that one is searched; otherwise, all available knowledge bases are considered. By default, at most 10 document chunks are returned with a score below a threshold of 2. A different threshold can optionally be provided using thethresholdparameter.
You can use these tools through the MCP interface.
The retrieve_knowledge tool performs a semantic search using a FAISS index. The index is automatically updated when the server starts or when a file in a knowledge base is modified.
The output of the retrieve_knowledge tool is a markdown formatted string with the following structure:
## Semantic Search Results
**Result 1:**
[Content of the most similar chunk]
**Source:**
```json
{
"source": "[Path to the file containing the chunk]"
}
```
---
**Result 2:**
[Content of the second most similar chunk]
**Source:**
```json
{
"source": "[Path to the file containing the chunk]"
}
```
> **Disclaimer:** The provided results might not all be relevant. Please cross-check the relevance of the information.
Each result includes the content of the most similar chunk, the source file, and a similarity score.
相关推荐
I craft unique cereal names, stories, and ridiculously cute Cereal Baby images.
I find academic articles and books for research and literature reviews.
Evaluator for marketplace product descriptions, checks for relevancy and keyword stuffing.
Confidential guide on numerology and astrology, based of GG33 Public information
Advanced software engineer GPT that excels through nailing the basics.
Emulating Dr. Jordan B. Peterson's style in providing life advice and insights.
Your go-to expert in the Rust ecosystem, specializing in precise code interpretation, up-to-date crate version checking, and in-depth source code analysis. I offer accurate, context-aware insights for all your Rust programming questions.
Converts Figma frames into front-end code for various mobile frameworks.
Entdecken Sie die umfassendste und aktuellste Sammlung von MCP-Servern auf dem Markt. Dieses Repository dient als zentraler Hub und bietet einen umfangreichen Katalog von Open-Source- und Proprietary MCP-Servern mit Funktionen, Dokumentationslinks und Mitwirkenden.
Die All-in-One-Desktop & Docker-AI-Anwendung mit integriertem Lappen, AI-Agenten, No-Code-Agent Builder, MCP-Kompatibilität und vielem mehr.
Fair-Code-Workflow-Automatisierungsplattform mit nativen KI-Funktionen. Kombinieren Sie visuelles Gebäude mit benutzerdefiniertem Code, SelbstHost oder Cloud, 400+ Integrationen.
🧑🚀 全世界最好的 llm 资料总结(数据处理、模型训练、模型部署、 O1 模型、 MCP 、小语言模型、视觉语言模型) | Zusammenfassung der weltbesten LLM -Ressourcen.
Reviews
user_i0BTsNVO
NexusHub by webdevtodayjason is an exceptional product for developers. It's extremely user-friendly and offers seamless integration with existing systems. The comprehensive documentation and responsive design make it a breeze to work with. Highly recommend for anyone looking to enhance their development workflow! Check it out at https://mcp.so/server/NexusHub/webdevtodayjason.