
ollama-Pydantic-Project
Proyecto de muestra creado para Pydantic Agent con modelo Ollama local con integración de servidor MCP.
1
Github Watches
0
Github Forks
0
Github Stars
Ollama Pydantic Project
This project demonstrates how to use a local Ollama model with the Pydantic agent framework to create an intelligent agent. The agent is connected to an MCP server to utilize tools and provides a user-friendly interface using Streamlit.
Overview
The main goal of this project is to showcase:
- Local Ollama Model Integration: Using a locally hosted Ollama model for generating responses.
- Pydantic Agent Framework: Creating an agent with Pydantic for data validation and interaction.
- MCP Server Connection: Enabling the agent to use tools via an MCP server.
- Streamlit UI: Providing a web-based chatbot interface for user interaction.
Prerequisites
Before setting up the project, ensure the following:
- Python: Install Python 3.8 or higher. You can download it from python.org.
-
Ollama Model: Install and run the Ollama server locally:
- Download the Ollama CLI from Ollama's official website.
- Install the CLI by following the instructions provided on their website.
- Start the Ollama server:
ollama serve
- Ensure the server is running on
http://localhost:11434/v1
.
- MCP Server: Set up an MCP server to enable agent tools. For more details, refer to MCP Server Sample.
Setup Instructions
Follow these steps to set up the project:
-
Clone the Repository:
git clone <repository-url> cd ollama-pydantic-project
-
Create a Virtual Environment:
python3 -m venv venv
-
Activate the Virtual Environment:
- On macOS/Linux:
source venv/bin/activate
- On Windows:
venv\Scripts\activate
- On macOS/Linux:
-
Install Dependencies:
pip install -r requirements.txt
-
Ensure the Ollama Server is Running: Start the Ollama server as described in the prerequisites.
-
Run the Application: Start the Streamlit application:
streamlit run src/streamlit_app.py
Usage
Once the application is running, open the provided URL in your browser (usually http://localhost:8501). You can interact with the chatbot by typing your queries in the input box. The agent will process your queries using the Ollama model and tools provided by the MCP server.
Example Interaction
Below is an example of how the chatbot interface looks when interacting with the agent:
Project Structure
The project is organized as follows:
ollama-pydantic-project/
├── src/
│ ├── streamlit_app.py # Main Streamlit application
│ ├── agents/
│ │ ├── base_agent.py # Abstract base class for agents
│ │ ├── ollama_agent.py # Implementation of the Ollama agent
│ ├── utils/
│ ├── config.py # Configuration settings
│ ├── logger.py # Logger utility
├── requirements.txt # Python dependencies
├── README.md # Project documentation
├── assets/
│ ├── ollama_agent_mcp_example.png # Example interaction image
├── .gitignore # Git ignore file
Features
- Streamlit Chatbot: A user-friendly chatbot interface.
- Ollama Model Integration: Uses a local Ollama model for generating responses.
- MCP Server Tools: Connects to an MCP server to enhance agent capabilities.
- Pydantic Framework: Ensures data validation and type safety.
Troubleshooting
- If you encounter issues with the Ollama server, ensure it is running on
http://localhost:11434/v1
. - If dependencies fail to install, ensure you are using Python 3.8 or higher and that your virtual environment is activated.
- For MCP server-related issues, refer to the MCP Server Sample.
License
This project is licensed under the MIT License. See the LICENSE file for details.
Contributing
Contributions are welcome! Feel free to open issues or submit pull requests.
相关推荐
I find academic articles and books for research and literature reviews.
Confidential guide on numerology and astrology, based of GG33 Public information
Emulating Dr. Jordan B. Peterson's style in providing life advice and insights.
Your go-to expert in the Rust ecosystem, specializing in precise code interpretation, up-to-date crate version checking, and in-depth source code analysis. I offer accurate, context-aware insights for all your Rust programming questions.
Advanced software engineer GPT that excels through nailing the basics.
Converts Figma frames into front-end code for various mobile frameworks.
Take an adjectivised noun, and create images making it progressively more adjective!
Descubra la colección más completa y actualizada de servidores MCP en el mercado. Este repositorio sirve como un centro centralizado, que ofrece un extenso catálogo de servidores MCP de código abierto y propietarios, completos con características, enlaces de documentación y colaboradores.
La aplicación AI de escritorio todo en uno y Docker con trapo incorporado, agentes de IA, creador de agentes sin código, compatibilidad de MCP y más.
Manipulación basada en Micrypthon I2C del expansor GPIO de la serie MCP, derivada de AdaFruit_MCP230xx
Plataforma de automatización de flujo de trabajo de código justo con capacidades de IA nativas. Combine el edificio visual con código personalizado, auto-anfitrión o nube, más de 400 integraciones.
🧑🚀 全世界最好的 llM 资料总结(数据处理、模型训练、模型部署、 O1 模型、 MCP 、小语言模型、视觉语言模型) | Resumen de los mejores recursos del mundo.
Una lista curada de servidores de protocolo de contexto del modelo (MCP)
Reviews

user_X7TfBaTz
I've been using the ollama-pydantic-project for a few weeks now, and I'm thoroughly impressed. The implementation is seamless and integrates perfectly with my existing workflow. Kudos to jageenshukla for creating such a well-thought-out project. If you're working with Pydantic, this is a must-try! Highly recommended. Check it out at the GitHub link provided.