MCP cover image
See in Github
2025-04-14

使用Horizo​​ndatawave API,可全面访问LinkedIn数据和功能,不仅可以数据检索,还可以对用户帐户进行稳健的管理。

0

Github Watches

3

Github Forks

13

Github Stars

HDW MCP Server

A Model Context Protocol (MCP) server that provides comprehensive access to LinkedIn data and functionalities using the HorizonDataWave API, enabling not only data retrieval but also robust management of user accounts.

Features

  • LinkedIn Users Search: Filter and search for LinkedIn users by keywords, name, title, company, location, industry, and education.

  • Profile Lookup: Retrieve detailed profile information for a LinkedIn user.

  • Email Lookup: Find LinkedIn user details by email address.

  • Posts & Reactions: Retrieve a user's posts and associated reactions.

  • Post Reposts & Comments: Retrieve reposts and comments for a specific LinkedIn post.

  • Account Management:

    • Chat Functionality: Retrieve and send chat messages via the LinkedIn management API.
    • Connection Management: Send connection invitations to LinkedIn users.
    • Post Commenting: Create comments on LinkedIn posts or replies.
    • User Connections: Retrieve a list of a user's LinkedIn connections.
  • Company Search & Details:

    • Google Company Search: Find LinkedIn companies using Google search – the first result is typically the best match.
    • Company Lookup: Retrieve detailed information about a LinkedIn company.
    • Company Employees: Retrieve employees for a given LinkedIn company.
  • Google Search


Tools

HDW MCP Server exposes several tools through the MCP protocol. Each tool is defined with its name, description, and input parameters:

  1. Search LinkedIn Users
    Name: search_linkedin_users
    Description: Search for LinkedIn users with various filters.
    Parameters:

    • keywords (optional): Any keyword for search.
    • first_name, last_name, title, company_keywords, school_keywords (optional).
    • current_company, past_company, location, industry, education (optional).
    • count (optional, default: 10): Maximum number of results (max 1000).
    • timeout (optional, default: 300): Timeout in seconds (20–1500).
  2. Get LinkedIn Profile
    Name: get_linkedin_profile
    Description: Retrieve detailed profile information about a LinkedIn user.
    Parameters:

    • user (required): User alias, URL, or URN.
    • with_experience, with_education, with_skills (optional, default: true).
  3. Get LinkedIn Email User
    Name: get_linkedin_email_user
    Description: Look up LinkedIn user details by email.
    Parameters:

    • email (required): Email address.
    • count (optional, default: 5).
    • timeout (optional, default: 300).
  4. Get LinkedIn User Posts
    Name: get_linkedin_user_posts
    Description: Retrieve posts for a LinkedIn user by URN.
    Parameters:

    • urn (required): User URN (must include prefix, e.g. fsd_profile:...).
    • count (optional, default: 10).
    • timeout (optional, default: 300).
  5. Get LinkedIn User Reactions
    Name: get_linkedin_user_reactions
    Description: Retrieve reactions for a LinkedIn user by URN.
    Parameters:

    • urn (required).
    • count (optional, default: 10).
    • timeout (optional, default: 300).
  6. Get LinkedIn Chat Messages
    Name: get_linkedin_chat_messages
    Description: Retrieve top chat messages from the LinkedIn management API.
    Parameters:

    • user (required): User URN (with prefix).
    • count (optional, default: 20).
    • timeout (optional, default: 300).
  7. Send LinkedIn Chat Message
    Name: send_linkedin_chat_message
    Description: Send a chat message using the LinkedIn management API.
    Parameters:

    • user (required): Recipient user URN (with prefix).
    • text (required): Message text.
    • timeout (optional, default: 300).
  8. Send LinkedIn Connection Request
    Name: send_linkedin_connection
    Description: Send a connection invitation to a LinkedIn user.
    Parameters:

    • user (required).
    • timeout (optional, default: 300).
  9. Send LinkedIn Post Comment
    Name: send_linkedin_post_comment
    Description: Create a comment on a LinkedIn post or reply.
    Parameters:

    • text (required): Comment text.
    • urn (required): Activity or comment URN.
    • timeout (optional, default: 300).
  10. Get LinkedIn User Connections
    Name: get_linkedin_user_connections
    Description: Retrieve a list of LinkedIn user connections.
    Parameters:

    • connected_after (optional): Timestamp filter.
    • count (optional, default: 20).
    • timeout (optional, default: 300).
  11. Get LinkedIn Post Reposts
    Name: get_linkedin_post_reposts
    Description: Retrieve reposts for a LinkedIn post.
    Parameters:

    • urn (required): Post URN (must start with activity:).
    • count (optional, default: 10).
    • timeout (optional, default: 300).
  12. Get LinkedIn Post Comments
    Name: get_linkedin_post_comments
    Description: Retrieve comments for a LinkedIn post.
    Parameters:

    • urn (required).
    • sort (optional, default: "relevance"; allowed values: "relevance", "recent").
    • count (optional, default: 10).
    • timeout (optional, default: 300).
  13. Get LinkedIn Google Company
    Name: get_linkedin_google_company
    Description: Search for LinkedIn companies via Google – the first result is typically the best match.
    Parameters:

    • keywords (required): Array of company keywords.
    • with_urn (optional, default: false).
    • count_per_keyword (optional, default: 1; range 1–10).
    • timeout (optional, default: 300).
  14. Get LinkedIn Company
    Name: get_linkedin_company
    Description: Retrieve detailed information about a LinkedIn company.
    Parameters:

    • company (required): Company alias, URL, or URN.
    • timeout (optional, default: 300).
  15. Get LinkedIn Company Employees
    Name: get_linkedin_company_employees
    Description: Retrieve employees of a LinkedIn company.
    Parameters:

    • companies (required): Array of company URNs.
    • keywords, first_name, last_name (optional).
    • count (optional, default: 10).
    • timeout (optional, default: 300).

Setup Guide

1. Clone the Repository (macOS)

Open your terminal and run the following commands:

# Clone the repository
git clone https://github.com/horizondatawave/hdw-mcp-server.git

# Change directory to the project folder
cd hdw-mcp-server

# Install dependencies
npm install

2. Obtain Your API Credentials

Register at app.horizondatawave.ai to get your API key and 100 free credits. You will receive your HDW_ACCESS_TOKEN and HDW_ACCOUNT_ID.


3. Configure the Environment

Create a .env file in the root of your project with the following content:

HDW_ACCESS_TOKEN=YOUR_HD_W_ACCESS_TOKEN
HDW_ACCOUNT_ID=YOUR_HD_W_ACCOUNT_ID

4. Client Configuration

4.1 Claude Desktop

Update your Claude configuration file (claude_desktop_config.json) with the following content:

{
  "mcpServers": {
    "hdw": {
      "command": "npx",
      "args": ["@horizondatawave/mcp"],
      "env": {
        "HDW_ACCESS_TOKEN": "YOUR_HD_W_ACCESS_TOKEN",
        "HDW_ACCOUNT_ID": "YOUR_HD_W_ACCOUNT_ID"
      }
    }
  }
}

Configuration file location:

  • macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
  • Windows: %APPDATA%\Claude\claude_desktop_config.json

4.2 Cursor

Easy way:
Open Cursor Settings and add a new MCP server with the command:

env HDW_ACCESS_TOKEN=your-access-token HDW_ACCOUNT_ID=your-account-id node /path/to/your/build/index.js

Safe way:
Copy the provided template run.template.sh to a new file (e.g. run.sh), update it with your credentials, and configure Cursor to run:

sh /path/to/your/run.sh

4.3 Windsurf

Update your Windsurf configuration file (mcp_config.json) with the following content:

{
  "mcpServers": {
    "hdw": {
      "command": "node",
      "args": ["/path/to/your/build/index.js"],
      "env": {
        "HDW_ACCESS_TOKEN": "YOUR_HD_W_ACCESS_TOKEN",
        "HDW_ACCOUNT_ID": "YOUR_HD_W_ACCOUNT_ID"
      }
    }
  }
}

Note: After configuration, you can disable official web tools to conserve your API credits.


MCP Client Example Configuration

Below is an example configuration for an MCP client (e.g., a custom integration):

{
  "mcpServers": {
    "hdw": {
      "command": "npx",
      "args": ["@horizondatawave/mcp"],
      "env": {
        "HDW_ACCESS_TOKEN": "YOUR_HD_W_ACCESS_TOKEN",
        "HDW_ACCOUNT_ID": "YOUR_HD_W_ACCOUNT_ID"
      }
    }
  }
}

Replace the paths and credentials with your own values.

License

This project is licensed under the MIT License.

相关推荐

  • NiKole Maxwell
  • I craft unique cereal names, stories, and ridiculously cute Cereal Baby images.

  • Bora Yalcin
  • Evaluator for marketplace product descriptions, checks for relevancy and keyword stuffing.

  • Yusuf Emre Yeşilyurt
  • I find academic articles and books for research and literature reviews.

  • https://suefel.com
  • Latest advice and best practices for custom GPT development.

  • https://maiplestudio.com
  • Find Exhibitors, Speakers and more

  • Carlos Ferrin
  • Encuentra películas y series en plataformas de streaming.

  • Joshua Armstrong
  • Confidential guide on numerology and astrology, based of GG33 Public information

  • Alexandru Strujac
  • Efficient thumbnail creator for YouTube videos

  • Emmet Halm
  • Converts Figma frames into front-end code for various mobile frameworks.

  • Elijah Ng Shi Yi
  • Advanced software engineer GPT that excels through nailing the basics.

  • lumpenspace
  • Take an adjectivised noun, and create images making it progressively more adjective!

  • apappascs
  • 发现市场上最全面,最新的MCP服务器集合。该存储库充当集中式枢纽,提供了广泛的开源和专有MCP服务器目录,并提供功能,文档链接和贡献者。

  • ShrimpingIt
  • MCP系列GPIO Expander的基于Micropython I2C的操作,源自ADAFRUIT_MCP230XX

  • OffchainLabs
  • 进行以太坊的实施

  • modelcontextprotocol
  • 模型上下文协议服务器

  • huahuayu
  • 统一的API网关,用于将多个Etherscan样区块链Explorer API与对AI助手的模型上下文协议(MCP)支持。

  • Mintplex-Labs
  • 带有内置抹布,AI代理,无代理构建器,MCP兼容性等的多合一桌面和Docker AI应用程序。

    Reviews

    3 (1)
    Avatar
    user_9rZOQYL9
    2025-04-16

    As an avid user of the hdw-mcp-server by horizondatawave, I can confidently say this server is a game-changer for managing MCP applications. The setup is smooth, and the performance is outstanding. The community support and detailed documentation on GitHub make it even better. Highly recommended for anyone looking to streamline their MCP server needs!