Cover image
Try Now
2025-03-19

3 years

Works with Finder

1

Github Watches

0

Github Forks

0

Github Stars

MCP Servers Multi-Agent AI Infrastructure

A comprehensive infrastructure for enabling multi-agent AI swarms powered by specialized Model Context Protocol (MCP) servers. This monorepo contains the full stack of components needed to orchestrate, connect, and empower intelligent agents with various specialized capabilities.

🌟 Overview

This project enables the creation of a multi-agent AI ecosystem where specialized agents can collaborate, share context, and leverage different capabilities through the Model Context Protocol (MCP). By providing a standardized communication layer, agents can seamlessly access vector databases, specialized tools, and various data sources through a unified protocol.

The infrastructure supports:

  • Semantic search and retrieval through vector embeddings
  • Multi-agent collaboration and communication
  • Modular, microservice-based architecture
  • Visual inspection and debugging of agent interactions
  • Extensible tool frameworks for AI capabilities

🧩 Core Components

Inspector

An interactive dashboard for monitoring, testing, and debugging MCP servers. Built with React/Vite frontend and Express backend.

  • Located in: /inspector
  • Features:
    • Real-time connection to any MCP server
    • Interactive exploration of available tools
    • Test prompts and tool invocations
    • Monitor agent interactions
    • Debug server responses and behavior

Qdrant-DB with MCP Integration

Vector database implementation using Qdrant with full MCP server integration, enabling semantic search capabilities for AI agents.

  • Located in: /qdrant-db
  • Features:
    • Vector embeddings for semantic similarity search
    • Document storage with metadata
    • Python client for advanced operations
    • FastEmbed integration for efficient embeddings
    • Seamless connection to the MCP ecosystem

MCP Docker Network

Infrastructure for orchestrating and connecting MCP services in a unified network.

  • Located in: /mcp-docker-network
  • Features:
    • Isolated network for secure service communication
    • Management tools for container orchestration
    • Service discovery within the swarm
    • Simplified deployment of complex agent systems

🚀 Getting Started

Prerequisites

  • Docker and Docker Compose
  • Node.js (for local development)
  • Python 3.9+ (for running clients and scripts)

Quick Start

  1. Clone the repository:

    git clone https://github.com/FrankGenGo/mcp-servers.git
    cd mcp-servers
    
  2. Set up the shared Docker network:

    cd mcp-docker-network
    ./scripts/manage-network.sh create
    
  3. Start the Qdrant vector database and MCP server:

    cd ../qdrant-db/qdrant_stack
    docker-compose up -d
    
  4. Start the Inspector dashboard:

    cd ../../inspector
    docker build -t mcp-inspector .
    docker run -d --name mcp-inspector --network mcp-docker-network -p 5173:5173 -p 3000:3000 mcp-inspector
    
  5. Access the Inspector dashboard at http://localhost:5173

🏗️ Architecture

This project implements a distributed microservices architecture centered around the Model Context Protocol:

┌───────────────┐     ┌───────────────┐     ┌───────────────┐
│   AI Agent    │     │  AI Agent     │     │  AI Agent     │
│  Capabilities │     │  Reasoning    │     │  Planning     │
└───────┬───────┘     └───────┬───────┘     └───────┬───────┘
        │                     │                     │
        │                     ▼                     │
        │             ┌───────────────┐             │
        └────────────►  MCP Network   ◄─────────────┘
                     │ Communication  │
                     └───────┬───────┘
                             │
              ┌──────────────┴──────────────┐
              │                             │
    ┌─────────▼──────────┐        ┌─────────▼──────────┐
    │   Qdrant MCP       │        │  Inspector         │
    │   Vector Search    │        │  Monitoring        │
    └────────────────────┘        └────────────────────┘

Components communicate over a shared Docker network, with:

  • Inspector dashboard (port 5173) → Express proxy (port 3000) → MCP servers
  • Qdrant MCP server (port 8000) → Qdrant database (port 6333)
  • All services connected via the mcp-docker-network

🧠 Use Cases

  • Multi-Agent Systems: Build collaborative agent systems that combine different AI capabilities
  • Knowledge Management: Create semantic search systems with intuitive AI interfaces
  • Tool Integration: Extend AI capabilities with specialized tools and data sources
  • Development & Debugging: Inspect and test MCP servers during development

🛠️ Development

Each component can be developed independently:

  • Inspector: React/TypeScript frontend with Express backend
  • Qdrant MCP Server: Python FastMCP implementation
  • Network Management: Bash scripts and Docker Compose configurations

See the README in each subdirectory for specific development instructions.

📚 Further Resources

📄 License

This project is licensed under the MIT License - see the LICENSE file for details.

相关推荐

  • NiKole Maxwell
  • I craft unique cereal names, stories, and ridiculously cute Cereal Baby images.

  • Bora Yalcin
  • Evaluator for marketplace product descriptions, checks for relevancy and keyword stuffing.

  • Joshua Armstrong
  • Confidential guide on numerology and astrology, based of GG33 Public information

  • https://suefel.com
  • Latest advice and best practices for custom GPT development.

  • Callycode Limited
  • A geek-themed horoscope generator blending Bitcoin prices, tech jargon, and astrological whimsy.

  • Alexandru Strujac
  • Efficient thumbnail creator for YouTube videos

  • Emmet Halm
  • Converts Figma frames into front-end code for various mobile frameworks.

  • Khalid kalib
  • Write professional emails

  • Beniyam Berhanu
  • Therapist adept at identifying core issues and offering practical advice with images.

  • Elijah Ng Shi Yi
  • Advanced software engineer GPT that excels through nailing the basics.

  • apappascs
  • 发现市场上最全面,最新的MCP服务器集合。该存储库充当集中式枢纽,提供了广泛的开源和专有MCP服务器目录,并提供功能,文档链接和贡献者。

  • ShrimpingIt
  • MCP系列GPIO Expander的基于Micropython I2C的操作,源自ADAFRUIT_MCP230XX

  • OffchainLabs
  • 进行以太坊的实施

  • huahuayu
  • 统一的API网关,用于将多个Etherscan样区块链Explorer API与对AI助手的模型上下文协议(MCP)支持。

  • deemkeen
  • 用电源组合控制您的MBOT2:MQTT+MCP+LLM

    Reviews

    4 (1)
    Avatar
    user_5TUMfZEa
    2025-04-16

    I've been using mcp-servers by FrankGenGo and it has been a game changer for my projects. The seamless integration and robust functionality offered in this solution are top-notch. Its user-friendly structure allows for ease of use, even for those who may not be highly technical. Highly recommend checking it out at https://github.com/FrankGenGo/mcp-servers!