Confidential guide on numerology and astrology, based of GG33 Public information

MCP-KUBERNETES服务器
轻巧的MCP服务器,可提供自然语言处理,并将API访问访问Kubernetes群集,并将Kubectl命令和Kubernetes Python客户端结合使用。
3 years
Works with Finder
1
Github Watches
0
Github Forks
0
Github Stars
Kubernetes MCP Server
A lightweight MCP server that provides natural language processing and API access to Kubernetes clusters, combining both kubectl commands and Kubernetes Python client.
https://github.com/user-attachments/assets/48e061cd-3e85-40ff-ab04-a1a2b9bbd152
✨ Features
-
Natural Language Interface: Convert plain English queries to kubectl commands
- List pods and deployments across all namespaces
- Fallback to general resource listing for unsupported queries
-
Full CRUD Operations:
- 🆕 Create/Delete namespaces, pods, and deployments via API endpoints
- 🔍 Inspect cluster resources
- ✏️ Modify labels, annotations, and deployment configurations
- 🗑️ Graceful deletion
- 📊 Scale deployments
-
Dual Execution Mode:
-
kubectl
command integration - Kubernetes Python client (official SDK)
-
-
Advanced Capabilities:
- Namespace validation (DNS-1123 compliant)
- Label filtering
- Grace period control
- Automatic command fallback
- Resource management (CPU, memory)
- Environment variable configuration
📦 Installation
Prerequisites
- Python 3.11+
- Kubernetes cluster access
-
kubectl
configured locally - UV installed
# Clone repository
git clone https://github.com/ductnn/mcp-kubernetes-server.git
cd mcp-kubernetes-server
# Create virtual environment
uv venv .venv
# Activate (Unix)
source .venv/bin/activate
# Install dependencies
uv pip install -r requirements.txt
🚀 Usage
Natural Language Processing
The server supports basic natural language queries for listing resources:
# List all pods
result = nl_processor.process("Show me all pods")
# List all deployments
result = nl_processor.process("Show me all deployments")
# Query with namespace
result = nl_processor.process("Show me all resources", "kube-system")
For more complex operations, use the dedicated API endpoints:
# Create a pod
pod_service.create_pod(
name="my-pod",
namespace="default",
image="nginx:latest",
labels={"app": "my-app"}
)
# Create a deployment
deployment_service.create_deployment(
name="my-deployment",
namespace="default",
image="nginx:latest",
replicas=3
)
# Delete a namespace
namespace_service.delete("my-namespace", force=True)
API Endpoints
The server provides RESTful endpoints for all operations:
-
/api/pods
- Pod operations -
/api/deployments
- Deployment operations -
/api/namespaces
- Namespace operations -
/api/cluster
- Cluster operations -
/api/nlp
- Natural language processing
🤖 Usage with AI Assistants
Claude Desktop
- Open your Claude Desktop and choose
Settings
-> choose modeDeveloper
->Edit config
and open fileclaude_desktop_config.json
and edit:
{
"mcpServers": {
"kubernetes": {
"command": "/path-to-your-uv/uv",
"args": [
"--directory",
"/path-you-project/", // Example for me /Users/ductn/mcp-kubernetes-server
"run",
"main.py"
]
}
}
}
- Then, restart your Claude Desktop and play :)
🧪 Testing
Run the test suite:
# Run all tests
pytest
# Run specific test file
pytest tests/unit/test_pod_service.py
# Run with coverage
pytest --cov=.
📝 License
This project is licensed under the MIT License - see the LICENSE file for details.
相关推荐
Take an adjectivised noun, and create images making it progressively more adjective!
一个适用于中小型团队的AI聊天机器人,支持DeepSeek,Open AI,Claude和Gemini等车型。 专为中小团队设计的ai聊天应用,支持deepSeek,打开ai,claude,双子座等模型。
Reviews

user_9DbNm9N5
As a dedicated user of the mcp-kubernetes-server by ductnn, I must say it has significantly streamlined our container orchestration. Its seamless integration and user-friendly interface make managing Kubernetes clusters a breeze. Highly recommend this to anyone looking for an efficient Kubernetes server solution.