Cover image
Try Now
2025-03-25

Ein MCP -Server für Codeüberprüfungen

3 years

Works with Finder

1

Github Watches

7

Github Forks

4

Github Stars

Code Review Server

A custom MCP server that performs code reviews using Repomix and LLMs.

Features

  • Flatten codebases using Repomix
  • Analyze code with Large Language Models
  • Get structured code reviews with specific issues and recommendations
  • Support for multiple LLM providers (OpenAI, Anthropic, Gemini)
  • Handles chunking for large codebases

Installation

# Clone the repository
git clone https://github.com/yourusername/code-review-server.git
cd code-review-server

# Install dependencies
npm install

# Build the server
npm run build

Configuration

Create a .env file in the root directory based on the .env.example template:

cp .env.example .env

Edit the .env file to set up your preferred LLM provider and API key:

# LLM Provider Configuration
LLM_PROVIDER=OPEN_AI
OPENAI_API_KEY=your_openai_api_key_here

Usage

As an MCP Server

The code review server implements the Model Context Protocol (MCP) and can be used with any MCP client:

# Start the server
node build/index.js

The server exposes two main tools:

  1. analyze_repo: Flattens a codebase using Repomix
  2. code_review: Performs a code review using an LLM

When to Use MCP Tools

This server provides two distinct tools for different code analysis needs:

analyze_repo

Use this tool when you need to:

  • Get a high-level overview of a codebase's structure and organization
  • Flatten a repository into a textual representation for initial analysis
  • Understand the directory structure and file contents without detailed review
  • Prepare for a more in-depth code review
  • Quickly scan a codebase to identify relevant files for further analysis

Example situations:

  • "I want to understand the structure of this repository before reviewing it"
  • "Show me what files and directories are in this codebase"
  • "Give me a flattened view of the code to understand its organization"

code_review

Use this tool when you need to:

  • Perform a comprehensive code quality assessment
  • Identify specific security vulnerabilities, performance bottlenecks, or code quality issues
  • Get actionable recommendations for improving code
  • Conduct a detailed review with severity ratings for issues
  • Evaluate a codebase against best practices

Example situations:

  • "Review this codebase for security vulnerabilities"
  • "Analyze the performance of these specific JavaScript files"
  • "Give me a detailed code quality assessment of this repository"
  • "Review my code and tell me how to improve its maintainability"

When to use parameters:

  • specificFiles: When you only want to review certain files, not the entire repository
  • fileTypes: When you want to focus on specific file extensions (e.g., .js, .ts)
  • detailLevel: Use 'basic' for a quick overview or 'detailed' for in-depth analysis
  • focusAreas: When you want to prioritize certain aspects (security, performance, etc.)

Using the CLI Tool

For testing purposes, you can use the included CLI tool:

node build/cli.js <repo_path> [options]

Options:

  • --files <file1,file2>: Specific files to review
  • --types <.js,.ts>: File types to include in the review
  • --detail <basic|detailed>: Level of detail (default: detailed)
  • --focus <areas>: Areas to focus on (security,performance,quality,maintainability)

Example:

node build/cli.js ./my-project --types .js,.ts --detail detailed --focus security,quality

Development

# Run tests
npm test

# Watch mode for development
npm run watch

# Run the MCP inspector tool
npm run inspector

LLM Integration

The code review server integrates directly with multiple LLM provider APIs:

  • OpenAI (default: gpt-4o)
  • Anthropic (default: claude-3-opus-20240307)
  • Gemini (default: gemini-1.5-pro)

Provider Configuration

Configure your preferred LLM provider in the .env file:

# Set which provider to use
LLM_PROVIDER=OPEN_AI  # Options: OPEN_AI, ANTHROPIC, or GEMINI

# Provider API Keys (add your key for the chosen provider)
OPENAI_API_KEY=your-openai-api-key
ANTHROPIC_API_KEY=your-anthropic-api-key
GEMINI_API_KEY=your-gemini-api-key

Model Configuration

You can optionally specify which model to use for each provider:

# Optional: Override the default models
OPENAI_MODEL=gpt-4-turbo
ANTHROPIC_MODEL=claude-3-sonnet-20240229
GEMINI_MODEL=gemini-1.5-flash-preview

How the LLM Integration Works

  1. The code_review tool processes code using Repomix to flatten the repository structure
  2. The code is formatted and chunked if necessary to fit within LLM context limits
  3. A detailed prompt is generated based on the focus areas and detail level
  4. The prompt and code are sent directly to the LLM API of your chosen provider
  5. The LLM response is parsed into a structured format
  6. The review is returned as a JSON object with issues, strengths, and recommendations

The implementation includes retry logic for resilience against API errors and proper formatting to ensure the most relevant code is included in the review.

Code Review Output Format

The code review is returned in a structured JSON format:

{
  "summary": "Brief summary of the code and its purpose",
  "issues": [
    {
      "type": "SECURITY|PERFORMANCE|QUALITY|MAINTAINABILITY",
      "severity": "HIGH|MEDIUM|LOW",
      "description": "Description of the issue",
      "line_numbers": [12, 15],
      "recommendation": "Recommended fix"
    }
  ],
  "strengths": ["List of code strengths"],
  "recommendations": ["List of overall recommendations"]
}

License

MIT

相关推荐

  • NiKole Maxwell
  • I craft unique cereal names, stories, and ridiculously cute Cereal Baby images.

  • Joshua Armstrong
  • Confidential guide on numerology and astrology, based of GG33 Public information

  • https://suefel.com
  • Latest advice and best practices for custom GPT development.

  • Emmet Halm
  • Converts Figma frames into front-end code for various mobile frameworks.

  • Elijah Ng Shi Yi
  • Advanced software engineer GPT that excels through nailing the basics.

  • Yasir Eryilmaz
  • AI scriptwriting assistant for short, engaging video content.

  • Daren White
  • A supportive coach for mastering all Spanish tenses.

  • J. DE HARO OLLE
  • Especialista en juegos de palabras en varios idiomas.

  • albert tan
  • Japanese education, creating tailored learning experiences.

  • https://maiplestudio.com
  • Find Exhibitors, Speakers and more

  • apappascs
  • Entdecken Sie die umfassendste und aktuellste Sammlung von MCP-Servern auf dem Markt. Dieses Repository dient als zentraler Hub und bietet einen umfangreichen Katalog von Open-Source- und Proprietary MCP-Servern mit Funktionen, Dokumentationslinks und Mitwirkenden.

  • huahuayu
  • Ein einheitliches API-Gateway zur Integration mehrerer Ethercan-ähnlicher Blockchain-Explorer-APIs mit Modellkontextprotokoll (MCP) für AI-Assistenten.

  • deemkeen
  • Steuern Sie Ihren MBOT2 mit einer Power Combo: MQTT+MCP+LLM

  • zhaoyunxing92
  • 本项目是一个钉钉 MCP (Message Connector Protocol )服务 , 提供了与钉钉企业应用交互的 api 接口。项目基于 Go 语言开发 , 支持员工信息查询和消息发送等功能。

  • pontusab
  • Die Cursor & Windsurf -Community finden Regeln und MCPs

    Reviews

    2 (1)
    Avatar
    user_WMJa5K8W
    2025-04-16

    Pinner MCP is an incredible tool for managing my application needs! Created by safedep, it offers seamless integration and efficient performance, making my workflow smoother and more productive. With an easy-to-navigate interface and robust features, it’s a must-have for anyone serious about MCP applications. Highly recommend checking it out at https://mcp.so/server/pinner-mcp/safedep!