Cover image
Try Now
2025-04-02

3 years

Works with Finder

1

Github Watches

1

Github Forks

1

Github Stars

AI Customer Support Bot - MCP Server

A Model Context Protocol (MCP) server that provides AI-powered customer support using Cursor AI and Glama.ai integration.

Features

  • Real-time context fetching from Glama.ai
  • AI-powered response generation with Cursor AI
  • Batch processing support
  • Priority queuing
  • Rate limiting
  • User interaction tracking
  • Health monitoring
  • MCP protocol compliance

Prerequisites

  • Python 3.8+
  • PostgreSQL database
  • Glama.ai API key
  • Cursor AI API key

Installation

  1. Clone the repository:
git clone <repository-url>
cd <repository-name>
  1. Create and activate a virtual environment:
python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate
  1. Install dependencies:
pip install -r requirements.txt
  1. Create a .env file based on .env.example:
cp .env.example .env
  1. Configure your .env file with your credentials:
# API Keys
GLAMA_API_KEY=your_glama_api_key_here
CURSOR_API_KEY=your_cursor_api_key_here

# Database
DATABASE_URL=postgresql://user:password@localhost/customer_support_bot

# API URLs
GLAMA_API_URL=https://api.glama.ai/v1

# Security
SECRET_KEY=your_secret_key_here

# MCP Server Configuration
SERVER_NAME="AI Customer Support Bot"
SERVER_VERSION="1.0.0"
API_PREFIX="/mcp"
MAX_CONTEXT_RESULTS=5

# Rate Limiting
RATE_LIMIT_REQUESTS=100
RATE_LIMIT_PERIOD=60

# Logging
LOG_LEVEL=INFO
  1. Set up the database:
# Create the database
createdb customer_support_bot

# Run migrations (if using Alembic)
alembic upgrade head

Running the Server

Start the server:

python app.py

The server will be available at http://localhost:8000

API Endpoints

1. Root Endpoint

GET /

Returns basic server information.

2. MCP Version

GET /mcp/version

Returns supported MCP protocol versions.

3. Capabilities

GET /mcp/capabilities

Returns server capabilities and supported features.

4. Process Request

POST /mcp/process

Process a single query with context.

Example request:

curl -X POST http://localhost:8000/mcp/process \
  -H "Content-Type: application/json" \
  -H "X-MCP-Auth: your-auth-token" \
  -H "X-MCP-Version: 1.0" \
  -d '{
    "query": "How do I reset my password?",
    "priority": "high",
    "mcp_version": "1.0"
  }'

5. Batch Processing

POST /mcp/batch

Process multiple queries in a single request.

Example request:

curl -X POST http://localhost:8000/mcp/batch \
  -H "Content-Type: application/json" \
  -H "X-MCP-Auth: your-auth-token" \
  -H "X-MCP-Version: 1.0" \
  -d '{
    "queries": [
      "How do I reset my password?",
      "What are your business hours?",
      "How do I contact support?"
    ],
    "mcp_version": "1.0"
  }'

6. Health Check

GET /mcp/health

Check server health and service status.

Rate Limiting

The server implements rate limiting with the following defaults:

  • 100 requests per 60 seconds
  • Rate limit information is included in the health check endpoint
  • Rate limit exceeded responses include reset time

Error Handling

The server returns structured error responses in the following format:

{
  "code": "ERROR_CODE",
  "message": "Error description",
  "details": {
    "timestamp": "2024-02-14T12:00:00Z",
    "additional_info": "value"
  }
}

Common error codes:

  • RATE_LIMIT_EXCEEDED: Rate limit exceeded
  • UNSUPPORTED_MCP_VERSION: Unsupported MCP version
  • PROCESSING_ERROR: Error processing request
  • CONTEXT_FETCH_ERROR: Error fetching context from Glama.ai
  • BATCH_PROCESSING_ERROR: Error processing batch request

Development

Project Structure

.
├── app.py              # Main application file
├── database.py         # Database configuration
├── middleware.py       # Middleware (rate limiting, validation)
├── models.py          # Database models
├── mcp_config.py      # MCP-specific configuration
├── requirements.txt   # Python dependencies
└── .env              # Environment variables

Adding New Features

  1. Update mcp_config.py with new configuration options
  2. Add new models in models.py if needed
  3. Create new endpoints in app.py
  4. Update capabilities endpoint to reflect new features

Security

  • All MCP endpoints require authentication via X-MCP-Auth header
  • Rate limiting is implemented to prevent abuse
  • Database credentials should be kept secure
  • API keys should never be committed to version control

Monitoring

The server provides health check endpoints for monitoring:

  • Service status
  • Rate limit usage
  • Connected services
  • Processing times

Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Commit your changes
  4. Push to the branch
  5. Create a Pull Request

License

This project is licensed under the MIT License - see the LICENSE file for details.

Support

For support, please create an issue in the repository or contact the development team.

相关推荐

  • Joshua Armstrong
  • Confidential guide on numerology and astrology, based of GG33 Public information

  • https://suefel.com
  • Latest advice and best practices for custom GPT development.

  • Alexandru Strujac
  • Efficient thumbnail creator for YouTube videos

  • Emmet Halm
  • Converts Figma frames into front-end code for various mobile frameworks.

  • Elijah Ng Shi Yi
  • Advanced software engineer GPT that excels through nailing the basics.

  • Lists Tailwind CSS classes in monospaced font

  • https://maiplestudio.com
  • Find Exhibitors, Speakers and more

  • lumpenspace
  • Take an adjectivised noun, and create images making it progressively more adjective!

  • https://appia.in
  • Siri Shortcut Finder – your go-to place for discovering amazing Siri Shortcuts with ease

  • Daren White
  • A supportive coach for mastering all Spanish tenses.

  • Carlos Ferrin
  • Encuentra películas y series en plataformas de streaming.

  • J. DE HARO OLLE
  • Especialista en juegos de palabras en varios idiomas.

  • apappascs
  • 发现市场上最全面,最新的MCP服务器集合。该存储库充当集中式枢纽,提供了广泛的开源和专有MCP服务器目录,并提供功能,文档链接和贡献者。

  • ShrimpingIt
  • MCP系列GPIO Expander的基于Micropython I2C的操作,源自ADAFRUIT_MCP230XX

  • jae-jae
  • MCP服务器使用剧作《无头浏览器》获取网页内容。

  • HiveNexus
  • 一个适用于中小型团队的AI聊天机器人,支持DeepSeek,Open AI,Claude和Gemini等车型。 专为中小团队设计的ai聊天应用,支持deepSeek,打开ai,claude,双子座等模型。

  • ravitemer
  • 一个功能强大的Neovim插件,用于管理MCP(模型上下文协议)服务器

  • patruff
  • Ollama和MCP服务器之间的桥梁,使本地LLMS可以使用模型上下文协议工具

    Reviews

    5 (1)
    Avatar
    user_gRUvwmSz
    2025-04-16

    The AI-Customer-Support-Bot--MCP-Server by ChiragPatankar has been a game-changer for our customer support team. It efficiently handles queries and provides accurate responses, reducing our workload significantly. The setup was straightforward, and the performance has been superb. Highly recommend for businesses looking to improve their customer support operations. You can check it out here: https://github.com/ChiragPatankar/AI-Customer-Support-Bot---MCP-Server