I craft unique cereal names, stories, and ridiculously cute Cereal Baby images.

Grok-MCP
用于GROK AI API集成的MCP服务器
1
Github Watches
3
Github Forks
1
Github Stars
Grok MCP Plugin
A Model Context Protocol (MCP) plugin that provides seamless access to Grok AI's powerful capabilities directly from Cline.
Features
This plugin exposes three powerful tools through the MCP interface:
- Chat Completion - Generate text responses using Grok's language models
- Image Understanding - Analyze images with Grok's vision capabilities
- Function Calling - Use Grok to call functions based on user input
Prerequisites
- Node.js (v16 or higher)
- A Grok AI API key (obtain from console.x.ai)
- Cline with MCP support
Installation
-
Clone this repository:
git clone https://github.com/Bob-lance/grok-mcp.git cd grok-mcp
-
Install dependencies:
npm install
-
Build the project:
npm run build
-
Add the MCP server to your Cline MCP settings:
For VSCode Cline extension, edit the file at:
~/Library/Application Support/Code/User/globalStorage/saoudrizwan.claude-dev/settings/cline_mcp_settings.json
Add the following configuration:
{ "mcpServers": { "grok-mcp": { "command": "node", "args": ["/path/to/grok-mcp/build/index.js"], "env": { "XAI_API_KEY": "your-grok-api-key" }, "disabled": false, "autoApprove": [] } } }
Replace
/path/to/grok-mcp
with the actual path to your installation andyour-grok-api-key
with your Grok AI API key.
Usage
Once installed and configured, the Grok MCP plugin provides three tools that can be used in Cline:
Chat Completion
Generate text responses using Grok's language models:
<use_mcp_tool>
<server_name>grok-mcp</server_name>
<tool_name>chat_completion</tool_name>
<arguments>
{
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "Hello, what can you tell me about Grok AI?"
}
],
"temperature": 0.7
}
</arguments>
</use_mcp_tool>
Image Understanding
Analyze images with Grok's vision capabilities:
<use_mcp_tool>
<server_name>grok-mcp</server_name>
<tool_name>image_understanding</tool_name>
<arguments>
{
"image_url": "https://example.com/image.jpg",
"prompt": "What is shown in this image?"
}
</arguments>
</use_mcp_tool>
You can also use base64-encoded images:
<use_mcp_tool>
<server_name>grok-mcp</server_name>
<tool_name>image_understanding</tool_name>
<arguments>
{
"base64_image": "base64-encoded-image-data",
"prompt": "What is shown in this image?"
}
</arguments>
</use_mcp_tool>
Function Calling
Use Grok to call functions based on user input:
<use_mcp_tool>
<server_name>grok-mcp</server_name>
<tool_name>function_calling</tool_name>
<arguments>
{
"messages": [
{
"role": "user",
"content": "What's the weather like in San Francisco?"
}
],
"tools": [
{
"type": "function",
"function": {
"name": "get_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA"
},
"unit": {
"type": "string",
"enum": ["celsius", "fahrenheit"],
"description": "The unit of temperature to use"
}
},
"required": ["location"]
}
}
}
]
}
</arguments>
</use_mcp_tool>
API Reference
Chat Completion
Generate a response using Grok AI chat completion.
Parameters:
-
messages
(required): Array of message objects with role and content -
model
(optional): Grok model to use (defaults to grok-2-latest) -
temperature
(optional): Sampling temperature (0-2, defaults to 1) -
max_tokens
(optional): Maximum number of tokens to generate (defaults to 16384)
Image Understanding
Analyze images using Grok AI vision capabilities.
Parameters:
-
prompt
(required): Text prompt to accompany the image -
image_url
(optional): URL of the image to analyze -
base64_image
(optional): Base64-encoded image data (without the data:image prefix) -
model
(optional): Grok vision model to use (defaults to grok-2-vision-latest)
Note: Either image_url
or base64_image
must be provided.
Function Calling
Use Grok AI to call functions based on user input.
Parameters:
-
messages
(required): Array of message objects with role and content -
tools
(required): Array of tool objects with type, function name, description, and parameters -
tool_choice
(optional): Tool choice mode (auto, required, none, defaults to auto) -
model
(optional): Grok model to use (defaults to grok-2-latest)
Development
Project Structure
-
src/index.ts
- Main server implementation -
src/grok-api-client.ts
- Grok API client implementation
Building
npm run build
Running
XAI_API_KEY="your-grok-api-key" node build/index.js
License
This project is licensed under the MIT License - see the LICENSE file for details.
Acknowledgements
相关推荐
Evaluator for marketplace product descriptions, checks for relevancy and keyword stuffing.
Confidential guide on numerology and astrology, based of GG33 Public information
Take an adjectivised noun, and create images making it progressively more adjective!
Reviews

user_y5YjSLKp
I have been using grok-mcp for a few months now, and it has significantly enhanced my coding productivity. The intuitive interface and extensive documentation provided by Bob-lance make it easy to understand and implement. Whether you're a beginner or an experienced developer, grok-mcp is a must-have tool in your development arsenal. Highly recommended!