MCP cover image
See in Github
2025-04-05

0

Github Watches

0

Github Forks

0

Github Stars

ChEMBL-MCP-Server

A FastMCP wrapper server based on the chembl_webresource_client package, providing API access to the ChEMBL database.

Features

  • Complete API access to the ChEMBL database
  • Asynchronous API calls implemented using FastMCP framework
  • Built-in error handling and timeout mechanisms
  • Support for both HTTP and stdio transport methods
  • Complete type annotations and docstrings

Installation

# Clone repository
git clone https://github.com/yourusername/ChEMBL-MCP-Server.git
cd ChEMBL-MCP-Server

# Install dependencies
pip install -r requirements.txt

Usage

Starting the Server

# Start HTTP server with default configuration
python chembl_searver.py

# Specify host and port
python chembl_searver.py --host 0.0.0.0 --port 8080

# Use stdio transport
python chembl_searver.py --transport stdio

# Set log level
python chembl_searver.py --log-level DEBUG

Available Parameters

  • --host: Server host address, defaults to 127.0.0.1
  • --port: Server port, defaults to 8000
  • --transport: Transport method, choose between http or stdio, defaults to http
  • --log-level: Log level, choose from DEBUG, INFO, WARNING, ERROR, CRITICAL, defaults to INFO

API Functions

The server provides the following API functions:

Data Entity APIs

  • example_activity: Get activity data
  • example_assay: Get assay data
  • example_target: Get target data
  • example_molecule: Get molecule data
  • example_drug: Get drug data
  • More data entity APIs...

Chemical Tool APIs

  • example_canonicalizeSmiles: Canonicalize SMILES strings
  • example_smiles2inchi: Convert SMILES to InChI
  • example_smiles2svg: Convert SMILES to SVG image
  • example_structuralAlerts: Get structural alerts
  • More chemical tool APIs...

Examples

Check the chembl_search.py file for examples of using various APIs.

Dependencies

  • chembl_webresource_client: ChEMBL Web Service Client
  • mcp: MCP Framework
  • fastapi: FastAPI Framework
  • uvicorn: ASGI Server
  • asyncio: Asynchronous I/O Library

License

MIT

相关推荐

  • https://suefel.com
  • Latest advice and best practices for custom GPT development.

  • Yusuf Emre Yeşilyurt
  • I find academic articles and books for research and literature reviews.

  • https://maiplestudio.com
  • Find Exhibitors, Speakers and more

  • Carlos Ferrin
  • Encuentra películas y series en plataformas de streaming.

  • Contraband Interactive
  • Emulating Dr. Jordan B. Peterson's style in providing life advice and insights.

  • Joshua Armstrong
  • Confidential guide on numerology and astrology, based of GG33 Public information

  • rustassistant.com
  • Your go-to expert in the Rust ecosystem, specializing in precise code interpretation, up-to-date crate version checking, and in-depth source code analysis. I offer accurate, context-aware insights for all your Rust programming questions.

  • Emmet Halm
  • Converts Figma frames into front-end code for various mobile frameworks.

  • Alexandru Strujac
  • Efficient thumbnail creator for YouTube videos

  • Elijah Ng Shi Yi
  • Advanced software engineer GPT that excels through nailing the basics.

  • lumpenspace
  • Take an adjectivised noun, and create images making it progressively more adjective!

  • apappascs
  • 发现市场上最全面,最新的MCP服务器集合。该存储库充当集中式枢纽,提供了广泛的开源和专有MCP服务器目录,并提供功能,文档链接和贡献者。

  • ShrimpingIt
  • MCP系列GPIO Expander的基于Micropython I2C的操作,源自ADAFRUIT_MCP230XX

  • modelcontextprotocol
  • 模型上下文协议服务器

  • Mintplex-Labs
  • 带有内置抹布,AI代理,无代理构建器,MCP兼容性等的多合一桌面和Docker AI应用程序。

  • ravitemer
  • 一个功能强大的Neovim插件,用于管理MCP(模型上下文协议)服务器

  • jae-jae
  • MCP服务器使用剧作《无头浏览器》获取网页内容。

  • patruff
  • Ollama和MCP服务器之间的桥梁,使本地LLMS可以使用模型上下文协议工具

  • n8n-io
  • 具有本机AI功能的公平代码工作流程自动化平台。将视觉构建与自定义代码,自宿主或云相结合,400+集成。

  • WangRongsheng
  • 🧑‍🚀 llm 资料总结(数据处理、模型训练、模型部署、 o1 模型、mcp 、小语言模型、视觉语言模型)|摘要世界上最好的LLM资源。

    Reviews

    4 (1)
    Avatar
    user_Di759V07
    2025-04-17

    As an avid user of the ChEMBL-MCP-Server by BioMCP-Hub, I can confidently say it's a game-changer for anyone involved in computational chemistry. The integration with ChEMBL's vast bioactivity data allows for extensive research and analysis. The user-friendly interface and powerful algorithms have significantly streamlined our workflows and enhanced productivity. Highly recommended for professionals and researchers alike!