I craft unique cereal names, stories, and ridiculously cute Cereal Baby images.

Popmelt MCP Server
An MCP (Model Context Protocol) server for Popmelt, providing access to Talent AI and Taste Profiles for dynamic UI component styling.
Overview
The Popmelt MCP Server leverages the Model Context Protocol to expose Talent AI profiles and styling capabilities to LLMs and other applications. It connects directly to Popmelt's PostgreSQL database to access and serve detailed Talent profiles, including structured metadata and weighted styling attributes.
Features
- Talent AI Profile Access: Retrieve complete Talent profiles with their unique aesthetic characteristics and design attributes
- CSS Styling Generation: Generate CSS styling rules directly from stored metadata
- Dynamic UI Component Styling: Easily integrate Talent-driven design choices into your UI components
- Database Integration: Direct connection to PostgreSQL database where Talent profiles are stored
- Multiple Transport Options: Run the server using stdio for command-line tools or HTTP with SSE for remote servers
Project Structure
popmelt-mcp-server/
├── src/ # Source code
│ ├── db/ # Database access layer
│ │ └── index.ts # Database connection and query functions
│ ├── utils/ # Utility modules
│ │ └── css-generator.ts # CSS generation utilities
│ ├── mcp-server.ts # MCP server core implementation
│ ├── server.ts # Stdio transport server
│ └── http-server.ts # HTTP/SSE transport server
├── scripts/ # Helper scripts
│ ├── setup-db.sql # SQL for setting up the database
│ └── setup-db.js # Script to run the SQL setup
├── examples/ # Example client usage
│ └── generate-css.js # Example script to generate CSS
├── dist/ # Compiled TypeScript output
├── package.json # Project configuration
└── tsconfig.json # TypeScript configuration
Database Schema
The Popmelt MCP Server uses a PostgreSQL database with the following schema:
CREATE TABLE talents (
id VARCHAR(50) PRIMARY KEY,
name VARCHAR(100) NOT NULL,
description TEXT,
created_at TIMESTAMP WITH TIME ZONE DEFAULT CURRENT_TIMESTAMP,
updated_at TIMESTAMP WITH TIME ZONE DEFAULT CURRENT_TIMESTAMP,
metadata JSONB NOT NULL
);
Where the metadata
JSON field has the following structure:
{
"aesthetic_characteristics": {
"style": "minimalist",
"mood": "calm",
"complexity": 2,
"minimalism": 9,
"boldness": 3,
"playfulness": 2,
"elegance": 8
},
"design_attributes": {
"whitespace_balance": 9,
"color_harmony": 7,
"visual_rhythm": 6,
"layout_density": 2,
"texture_use": 1,
"border_use": 2,
"shadow_use": 3
},
"color_palette": {
"primary": "#2D3748",
"secondary": "#4A5568",
"accent": "#38B2AC",
"background": "#FFFFFF",
"text": "#1A202C"
},
"typography": {
"headingFont": "Inter, sans-serif",
"bodyFont": "Inter, sans-serif",
"scale": 1.2,
"weight": "light",
"letterSpacing": 0.02,
"lineHeight": 1.5
}
}
Getting Started
Prerequisites
- Node.js 18 or higher
- PostgreSQL database
Installation
- Clone this repository
- Install dependencies:
npm install
- Copy the example environment file and update with your database details:
cp .env.example .env
- Set up the database:
node scripts/setup-db.js
- Build the TypeScript code:
npm run build
Running the Server
Two server modes are available:
- Standard stdio mode (for command-line tools and direct integration):
npm start
- HTTP server with SSE support (for remote access and web integration):
npm run start:http
The HTTP server provides:
- An SSE endpoint at
/sse
for receiving real-time updates - A POST endpoint at
/messages
for sending commands - A health check endpoint at
/health
API Reference
Resources
The server exposes the following MCP resources:
Resource URI | Description |
---|---|
talent://list |
List all available talent profiles |
talent://{id} |
Get a specific talent profile by ID |
talent-attribute://{id}/{attribute} |
Get a specific attribute of a talent (supports dot notation for nested properties) |
component-style://{talent_id}/{component_name} |
Get CSS for a specific component using a talent profile |
Tools
The server provides the following MCP tools:
Tool Name | Description | Arguments |
---|---|---|
generate-css |
Generate CSS for a component based on a talent profile | talentId , component , state (optional), customProperties (optional) |
generate-component-library |
Generate CSS for a complete component library | talentId |
query-talents |
Perform a read-only query on talent metadata | filters |
analyze-style-compatibility |
Analyze compatibility between different talent styles | talentId1 , talentId2 |
Prompts
The server offers the following MCP prompts:
Prompt Name | Description | Arguments |
---|---|---|
style-component |
LLM prompt for styling a component | talentId , component , requirements (optional) |
create-talent-description |
LLM prompt for creating a descriptive summary of a talent | talentId |
recommend-talent |
LLM prompt for recommending talents based on requirements | projectType , brandPersonality , targetAudience , aestheticPreferences (optional) |
Example Usage
Using the MCP Client
import { Client } from '@modelcontextprotocol/sdk/client/index.js';
import { StdioClientTransport } from '@modelcontextprotocol/sdk/client/stdio.js';
// Create transport
const transport = new StdioClientTransport({
command: 'node',
args: ['dist/server.js']
});
// Create client
const client = new Client(
{ name: 'example-client', version: '1.0.0' },
{ capabilities: { resources: {}, tools: {} } }
);
// Connect to server
await client.connect(transport);
// List all talents
const talents = await client.listResources('talent://');
// Get a specific talent
const talent = await client.readResource('talent://modern-minimalist');
// Generate CSS for a button
const css = await client.callTool({
name: 'generate-css',
arguments: {
talentId: 'modern-minimalist',
component: 'button',
state: 'hover'
}
});
// Analyze compatibility between two talents
const compatibility = await client.callTool({
name: 'analyze-style-compatibility',
arguments: {
talentId1: 'modern-minimalist',
talentId2: 'bold-vibrant'
}
});
Running the Example Script
node examples/generate-css.js
This example script demonstrates how to use the MCP client to generate CSS for all available talents and analyze compatibility between two talents.
Development
Building the Project
npm run build
Running in Development Mode
npm run dev
License
MIT
相关推荐
I find academic articles and books for research and literature reviews.
Evaluator for marketplace product descriptions, checks for relevancy and keyword stuffing.
Confidential guide on numerology and astrology, based of GG33 Public information
Emulating Dr. Jordan B. Peterson's style in providing life advice and insights.
Your go-to expert in the Rust ecosystem, specializing in precise code interpretation, up-to-date crate version checking, and in-depth source code analysis. I offer accurate, context-aware insights for all your Rust programming questions.
Advanced software engineer GPT that excels through nailing the basics.
Converts Figma frames into front-end code for various mobile frameworks.
Descubra la colección más completa y actualizada de servidores MCP en el mercado. Este repositorio sirve como un centro centralizado, que ofrece un extenso catálogo de servidores MCP de código abierto y propietarios, completos con características, enlaces de documentación y colaboradores.
La aplicación AI de escritorio todo en uno y Docker con trapo incorporado, agentes de IA, creador de agentes sin código, compatibilidad de MCP y más.
Manipulación basada en Micrypthon I2C del expansor GPIO de la serie MCP, derivada de AdaFruit_MCP230xx
Plataforma de automatización de flujo de trabajo de código justo con capacidades de IA nativas. Combine el edificio visual con código personalizado, auto-anfitrión o nube, más de 400 integraciones.
Espejo dehttps: //github.com/agentience/practices_mcp_server
🧑🚀 全世界最好的 llM 资料总结(数据处理、模型训练、模型部署、 O1 模型、 MCP 、小语言模型、视觉语言模型) | Resumen de los mejores recursos del mundo.
Reviews

user_fUPl1NHv
The MLflow Prompt Registry MCP Server created by B-Step62 is a game-changer for managing machine learning workflows. Its robust features and seamless integration significantly improve deployment processes. Highly recommend for professionals seeking efficiency in ML project management. Check it out: https://mcp.so/server/mcp-server-mlflow/B-Step62