
python_mcp
Servidor MCP para ejecutar el código Python localmente
1
Github Watches
14
Github Forks
50
Github Stars
python_local MCP Server
An MCP Server that provides an interactive Python REPL (Read-Eval-Print Loop) environment.
Components
Resources
The server provides access to REPL session history:
- Custom
repl://
URI scheme for accessing session history - Each session's history can be viewed as a text/plain resource
- History shows input code and corresponding output for each execution
Tools
The server implements one tool:
-
python_repl
: Executes Python code in a persistent session- Takes
code
(Python code to execute) andsession_id
as required arguments - Maintains separate state for each session
- Supports both expressions and statements
- Captures and returns stdout/stderr output
- Takes
Configuration
Install
Claude Desktop
On MacOS: ~/Library/Application\ Support/Claude/claude_desktop_config.json
On Windows: %APPDATA%/Claude/claude_desktop_config.json
Development/Unpublished Servers Configuration
```json "mcpServers": { "python_local": { "command": "uv", "args": [ "--directory", "/path/to/python_local", "run", "python_local" ] } } ```Published Servers Configuration
```json "mcpServers": { "python_local": { "command": "uvx", "args": [ "python_local" ] } } ```Development
Building and Publishing
To prepare the package for distribution:
- Sync dependencies and update lockfile:
uv sync
- Build package distributions:
uv build
This will create source and wheel distributions in the dist/
directory.
- Publish to PyPI:
uv publish
Note: You'll need to set PyPI credentials via environment variables or command flags:
- Token:
--token
orUV_PUBLISH_TOKEN
- Or username/password:
--username
/UV_PUBLISH_USERNAME
and--password
/UV_PUBLISH_PASSWORD
Debugging
Since MCP servers run over stdio, debugging can be challenging. For the best debugging experience, we strongly recommend using the MCP Inspector.
You can launch the MCP Inspector via npm
with this command:
npx @modelcontextprotocol/inspector uv --directory /path/to/python_local run python-local
Upon launching, the Inspector will display a URL that you can access in your browser to begin debugging.
相关推荐
I find academic articles and books for research and literature reviews.
Confidential guide on numerology and astrology, based of GG33 Public information
Emulating Dr. Jordan B. Peterson's style in providing life advice and insights.
Your go-to expert in the Rust ecosystem, specializing in precise code interpretation, up-to-date crate version checking, and in-depth source code analysis. I offer accurate, context-aware insights for all your Rust programming questions.
Advanced software engineer GPT that excels through nailing the basics.
Converts Figma frames into front-end code for various mobile frameworks.
Take an adjectivised noun, and create images making it progressively more adjective!
Descubra la colección más completa y actualizada de servidores MCP en el mercado. Este repositorio sirve como un centro centralizado, que ofrece un extenso catálogo de servidores MCP de código abierto y propietarios, completos con características, enlaces de documentación y colaboradores.
La aplicación AI de escritorio todo en uno y Docker con trapo incorporado, agentes de IA, creador de agentes sin código, compatibilidad de MCP y más.
Manipulación basada en Micrypthon I2C del expansor GPIO de la serie MCP, derivada de AdaFruit_MCP230xx
Plataforma de automatización de flujo de trabajo de código justo con capacidades de IA nativas. Combine el edificio visual con código personalizado, auto-anfitrión o nube, más de 400 integraciones.
🧑🚀 全世界最好的 llM 资料总结(数据处理、模型训练、模型部署、 O1 模型、 MCP 、小语言模型、视觉语言模型) | Resumen de los mejores recursos del mundo.
Una lista curada de servidores de protocolo de contexto del modelo (MCP)
Un poderoso complemento Neovim para administrar servidores MCP (protocolo de contexto del modelo)
Puente entre los servidores Ollama y MCP, lo que permite a LLM locales utilizar herramientas de protocolo de contexto del modelo
Reviews

user_9Y9CyDSf
I have been using python_mcp by Alec2435, and it has truly revolutionized the way I manage my multi-cloud projects. The tool's seamless integration and intuitive design make it a breeze to use, even for complex deployments. I highly recommend checking it out on GitHub for anyone looking to streamline their cloud operations!