MCP cover image

1

Github Watches

0

Github Forks

4

Github Stars

Agentset

TypeScript SDK for Agentset, an agentic RAG-as-a-service.

npm version License Build Status Downloads Size

Installation

using npm:

npm install agentset

using yarn:

yarn add agentset

using pnpm:

pnpm add agentset

Getting Started

import { Agentset } from "agentset";

// Initialize the client
const agentset = new Agentset({
  apiKey: "your_api_key_here",
});

// Create a namespace
const namespace = await agentset.namespaces.create({
  name: "My Knowledge Base",
  // Optional: provide custom embedding model
  embeddingConfig: {
    provider: "OPENAI",
    model: "text-embedding-3-small",
    apiKey: "your_openai_api_key_here",
  },
});

// Get a namespace by ID or slug
const ns = agentset.namespace("my-knowledge-base");

// Ingest content
await ns.ingestion.create({
  payload: {
    type: "TEXT",
    text: "This is some content to ingest into the knowledge base.",
    name: "Introduction",
  },
});

// List all ingestion jobs
const { jobs, pagination } = await ns.ingestion.all();

// Get a specific ingestion job
const job = await ns.ingestion.get("job_id");

// List all documents
const { documents } = await ns.documents.all();

// Search the knowledge base
const results = await ns.search("What is Agentset?");

API Reference

Visit the full documentation for more details.

Custom Fetch Implementation

You can provide a custom fetch implementation:

import { Agentset } from "agentset";
import nodeFetch from "node-fetch";

const agentset = new Agentset({
  apiKey: "your_api_key_here",
  fetcher: nodeFetch,
});

Error Handling

The SDK provides typed errors that you can catch and handle:

import { Agentset, NotFoundError, UnauthorizedError } from "agentset";

try {
  const namespace = await agentset.namespaces.get("non-existent-id");
} catch (error) {
  if (error instanceof NotFoundError) {
    console.error("Namespace not found");
  } else if (error instanceof UnauthorizedError) {
    console.error("Invalid API key");
  } else {
    console.error("Unexpected error", error);
  }
}

相关推荐

  • https://suefel.com
  • Latest advice and best practices for custom GPT development.

  • Yusuf Emre Yeşilyurt
  • I find academic articles and books for research and literature reviews.

  • https://maiplestudio.com
  • Find Exhibitors, Speakers and more

  • Carlos Ferrin
  • Encuentra películas y series en plataformas de streaming.

  • Joshua Armstrong
  • Confidential guide on numerology and astrology, based of GG33 Public information

  • Contraband Interactive
  • Emulating Dr. Jordan B. Peterson's style in providing life advice and insights.

  • rustassistant.com
  • Your go-to expert in the Rust ecosystem, specializing in precise code interpretation, up-to-date crate version checking, and in-depth source code analysis. I offer accurate, context-aware insights for all your Rust programming questions.

  • Elijah Ng Shi Yi
  • Advanced software engineer GPT that excels through nailing the basics.

  • Emmet Halm
  • Converts Figma frames into front-end code for various mobile frameworks.

  • Alexandru Strujac
  • Efficient thumbnail creator for YouTube videos

  • lumpenspace
  • Take an adjectivised noun, and create images making it progressively more adjective!

  • apappascs
  • 发现市场上最全面,最新的MCP服务器集合。该存储库充当集中式枢纽,提供了广泛的开源和专有MCP服务器目录,并提供功能,文档链接和贡献者。

  • modelcontextprotocol
  • 模型上下文协议服务器

  • Mintplex-Labs
  • 带有内置抹布,AI代理,无代理构建器,MCP兼容性等的多合一桌面和Docker AI应用程序。

  • ShrimpingIt
  • MCP系列GPIO Expander的基于Micropython I2C的操作,源自ADAFRUIT_MCP230XX

  • n8n-io
  • 具有本机AI功能的公平代码工作流程自动化平台。将视觉构建与自定义代码,自宿主或云相结合,400+集成。

  • open-webui
  • 用户友好的AI接口(支持Ollama,OpenAi API,...)

  • WangRongsheng
  • 🧑‍🚀 llm 资料总结(数据处理、模型训练、模型部署、 o1 模型、mcp 、小语言模型、视觉语言模型)|摘要世界上最好的LLM资源。

    Reviews

    5 (1)
    Avatar
    user_l2aZtZPr
    2025-04-16

    As a dedicated user of the MCP application through Agentset, I am thoroughly impressed by its capabilities. The seamless integration and robust performance make it a standout tool. Developed by Agentset-ai, this package has significantly enhanced my workflow efficiency. Highly recommended for anyone in need of a reliable MCP solution. Check it out at the given GitHub link.