MCP cover image

多边界聚类和优先级

1

Github Watches

3

Github Forks

8

Github Stars

Multiple-Boundary Clustering and Prioritization to Promote Neural Network Retraining

This repository stores our experimental codes and part of the simulated datasets for paper `Multiple-Boundary Clustering and Prioritization to Promote Neural Network Retraining'. MCP is short for our proposed sampling method Multiple-Boundary Clustering and Prioritization.

Dataset:

Part of the datasets lies in the folder 'dataset'. Because some of our simulated test datasets exceed GitHub's file size limit of 100.00 MB, we can only upload part of our datasets in file '/mnist'.

The operational details of simulated test datasets are listed in the README under the folder 'dataset'.

Main experimental codes

You can easily implement our method and 5 baseline methods by yourself or modifying this code.

The main experimental codes are samedist_mnist_retrain.py, samedist_cifar_retrain.py, samedist_svhn_retrain.py. You can modify the list variables 'baselines'(methods) and 'operators'(simulated dataset) to run what you prefer.

baselines =['MCP','LSA','DSA','CES','AAL','SRS']

operators =['fgsm','jsma','bim-a','bim-b','cw-l2','scale','rotation','translation','shear','brightness','contrast']

Baseline methods

MCP. Our method "MCP" is implemented in the "samedist_***_retrain.py" as the function "select_my_optimize".

LSA/DSA. You can directly invoke the functions "fetch_lsa" and "fetch_dsa" from "/LSA_DSA/sa.py" which is downloaded online from the paper "Guiding Deep Learning System Testing Using Surprise Adequacy". These functions can help you get the SA value of each input. The higher the value of SA is, the corresponding test case is more surprise to the DNN under testing. So we select the subset of test cases with higher corresponding SAs.

CES. You can directly invoke the functions "conditional_sample" from "CES/condition.py" which is downloaded online from the git. The original codes have no external interface. In order to call these codes conveniently, we rewrite an interface function, but the internal code and logic about sampling completely reuse their code.

AAL. This approach is written by Matlab. We have write a individual README in the file "AAL" along with all the codes and our experimental setups and results. For short, you can run MATLAB programs and get the intermediate results stored in mnist_finalResults, cifar_finalResults, svhn_finalResults. Then you can run it in our python codes just as the other baseline methods.

SRS. This method is implemented in the "samedist_***_retrain.py" as the function "select_rondom".

相关推荐

  • https://suefel.com
  • Latest advice and best practices for custom GPT development.

  • Yusuf Emre Yeşilyurt
  • I find academic articles and books for research and literature reviews.

  • https://maiplestudio.com
  • Find Exhibitors, Speakers and more

  • Carlos Ferrin
  • Encuentra películas y series en plataformas de streaming.

  • Joshua Armstrong
  • Confidential guide on numerology and astrology, based of GG33 Public information

  • Elijah Ng Shi Yi
  • Advanced software engineer GPT that excels through nailing the basics.

  • Contraband Interactive
  • Emulating Dr. Jordan B. Peterson's style in providing life advice and insights.

  • rustassistant.com
  • Your go-to expert in the Rust ecosystem, specializing in precise code interpretation, up-to-date crate version checking, and in-depth source code analysis. I offer accurate, context-aware insights for all your Rust programming questions.

  • Emmet Halm
  • Converts Figma frames into front-end code for various mobile frameworks.

  • Alexandru Strujac
  • Efficient thumbnail creator for YouTube videos

  • lumpenspace
  • Take an adjectivised noun, and create images making it progressively more adjective!

  • apappascs
  • 发现市场上最全面,最新的MCP服务器集合。该存储库充当集中式枢纽,提供了广泛的开源和专有MCP服务器目录,并提供功能,文档链接和贡献者。

  • Mintplex-Labs
  • 带有内置抹布,AI代理,无代理构建器,MCP兼容性等的多合一桌面和Docker AI应用程序。

  • n8n-io
  • 具有本机AI功能的公平代码工作流程自动化平台。将视觉构建与自定义代码,自宿主或云相结合,400+集成。

  • ShrimpingIt
  • MCP系列GPIO Expander的基于Micropython I2C的操作,源自ADAFRUIT_MCP230XX

  • WangRongsheng
  • 🧑‍🚀 llm 资料总结(数据处理、模型训练、模型部署、 o1 模型、mcp 、小语言模型、视觉语言模型)|摘要世界上最好的LLM资源。

  • metorial
  • 数百个MCP服务器的容器化版本📡📡

  • open-webui
  • 用户友好的AI接口(支持Ollama,OpenAi API,...)

  • langgenius
  • Reviews

    5 (1)
    Avatar
    user_f425oVz8
    2025-04-18

    As a dedicated user of MCP, I must say it's an incredibly useful tool developed by actionabletest. Its seamless integration and user-friendly interface make it a joy to use. From navigating the start URL to accessing comprehensive documentation on GitHub, MCP offers a robust experience that caters to both beginners and advanced users. It's a must-have for anyone seeking efficiency and effectiveness in their applications. Highly recommended!