
Python-SECHINAL-PTINATING-MCP
Una implementación de Python del servidor MCP de pensamiento secuencial utilizando el protocolo de contexto del modelo oficial (MCP) Python SDK. Este servidor facilita un proceso de pensamiento detallado y paso a paso para la resolución de problemas y el análisis.
1
Github Watches
0
Github Forks
0
Github Stars
Sequential Thinking MCP Server (Python Implementation)
A Python implementation of the Sequential Thinking MCP server using the official Model Context Protocol (MCP) Python SDK. This server facilitates a detailed, step-by-step thinking process for problem-solving and analysis.
Features
- Break down complex problems into manageable steps
- Revise and refine thoughts as understanding deepens
- Branch into alternative paths of reasoning
- Adjust the total number of thoughts dynamically
- Generate and verify solution hypotheses
Usage
Running Directly
uv --directory "/path/to/sequential-thinking-mcp" run main.py
Development Mode
For development and testing, you can use the MCP CLI tools:
# Install MCP CLI tools
pip install "mcp[cli]"
# Run in development mode
mcp dev "/path/to/sequential-thinking-mcp"
# npx @modelcontextprotocol/inspector
npx @modelcontextprotocol/inspector uv --diectory "/path/to/sequential-thinking-mcp" run main.py
Integration
mcp install "\path\to\sequential-thinking-mcp\server.py"
{
"mcpServers": {
"sequential-thinking": {
"command": "uv",
"args": [
"--directory",
"/path/to/sequential-thinking-mcp",
"run",
"main.py"
]
}
}
}
Sequential Thinking Tool
The server provides a tool called sequential_thinking
with the following parameters:
-
thought
(string): The current thinking step -
thoughtNumber
(integer): Current thought number -
totalThoughts
(integer): Estimated total thoughts needed -
nextThoughtNeeded
(boolean): Whether another thought step is needed -
isRevision
(boolean, optional): Whether this revises previous thinking -
revisesThought
(integer, optional): Which thought is being reconsidered -
branchFromThought
(integer, optional): Branching point thought number -
branchId
(string, optional): Branch identifier -
needsMoreThoughts
(boolean, optional): If more thoughts are needed
Resources
The server provides the following resources for accessing thought data:
-
thoughts://history
: Get the complete thought history -
thoughts://branches/{branch_id}
: Get thoughts for a specific branch -
thoughts://summary
: Get a summary of all thoughts and branches
Prompts
-
thinking_process_guide
: Guide for using the sequential thinking process
Example Usage
# First thought
sequential_thinking(
thought="First, we need to understand the problem requirements.",
thoughtNumber=1,
totalThoughts=5,
nextThoughtNeeded=True
)
# Second thought
sequential_thinking(
thought="Now, let's analyze the key constraints.",
thoughtNumber=2,
totalThoughts=5,
nextThoughtNeeded=True
)
# Revise a thought
sequential_thinking(
thought="Actually, we need to clarify the problem requirements first.",
thoughtNumber=1,
totalThoughts=5,
nextThoughtNeeded=True,
isRevision=True,
revisesThought=1
)
# Branch from thought 2
sequential_thinking(
thought="Let's explore an alternative approach.",
thoughtNumber=3,
totalThoughts=5,
nextThoughtNeeded=True,
branchFromThought=2,
branchId="alternative-approach"
)
Integration with Claude or Other AI Assistants
To use this server with Claude or other AI assistants that support MCP:
- Install the MCP server in Claude Desktop using the MCP CLI
- The AI can then use the sequential_thinking tool to break down complex problems
About Model Context Protocol (MCP)
The Model Context Protocol (MCP) is a standardized way for applications to provide context and tools to LLMs. It allows:
- Resources: Providing contextual data to the LLM
- Tools: Exposing functionality for the LLM to take actions
- Prompts: Defining reusable templates for LLM interactions
For more information, visit modelcontextprotocol.io
License
MIT
相关推荐
I find academic articles and books for research and literature reviews.
Confidential guide on numerology and astrology, based of GG33 Public information
Emulating Dr. Jordan B. Peterson's style in providing life advice and insights.
Your go-to expert in the Rust ecosystem, specializing in precise code interpretation, up-to-date crate version checking, and in-depth source code analysis. I offer accurate, context-aware insights for all your Rust programming questions.
Advanced software engineer GPT that excels through nailing the basics.
Converts Figma frames into front-end code for various mobile frameworks.
Take an adjectivised noun, and create images making it progressively more adjective!
Descubra la colección más completa y actualizada de servidores MCP en el mercado. Este repositorio sirve como un centro centralizado, que ofrece un extenso catálogo de servidores MCP de código abierto y propietarios, completos con características, enlaces de documentación y colaboradores.
La aplicación AI de escritorio todo en uno y Docker con trapo incorporado, agentes de IA, creador de agentes sin código, compatibilidad de MCP y más.
Manipulación basada en Micrypthon I2C del expansor GPIO de la serie MCP, derivada de AdaFruit_MCP230xx
Plataforma de automatización de flujo de trabajo de código justo con capacidades de IA nativas. Combine el edificio visual con código personalizado, auto-anfitrión o nube, más de 400 integraciones.
🧑🚀 全世界最好的 llM 资料总结(数据处理、模型训练、模型部署、 O1 模型、 MCP 、小语言模型、视觉语言模型) | Resumen de los mejores recursos del mundo.
Un poderoso complemento Neovim para administrar servidores MCP (protocolo de contexto del modelo)
Reviews

user_vAqHr0Kd
Python-sequential-thinking-mcp by XD3an is an exceptional tool for enhancing your sequential thinking skills with Python. The GitHub page is well-structured and provides all the necessary information to get started. The seamless integration and user-friendly approach make it a must-have for anyone looking to improve their Python proficiency. Highly recommended!