Confidential guide on numerology and astrology, based of GG33 Public information

MCP-Sentry
MCP Sentry服务器
3 years
Works with Finder
1
Github Watches
0
Github Forks
0
Github Stars
MCP Sentry Server (Node.js)
This is a Node.js + TypeScript implementation of the Model Context Protocol (MCP) Sentry server. It provides integration with Sentry for retrieving error reports and stacktraces through MCP.
Features
- Integration with Sentry API for error tracking and monitoring
- Support for both standard MCP over stdin/stdout and SSE (Server-Sent Events) transport
- Configurable port for the SSE server (default: 3579)
Prerequisites
- Node.js >= 20.0.0
- pnpm >= 10.5.2
Installation
Clone the repository and install dependencies:
pnpm install
Configuration
Create a .env
file in the root directory with your Sentry authentication token:
SENTRY_TOKEN=your_sentry_auth_token_here
You can obtain your Sentry authentication token from your Sentry account settings.
Usage
Build the Project
pnpm build
Run the Server
pnpm start
Alternatively, you can specify the Sentry authentication token and API base as command-line arguments:
pnpm start --auth-token your_sentry_auth_token_here --api-base your_sentry_api_base_here
Run with SSE Support
pnpm start:sse
This will start an Express server with SSE support on port 3579 (default). You can access the SSE endpoint at:
http://localhost:3579/sse
You can also customize the environment variables using a .env.local
file.
Development Mode
pnpm dev
MCP Configuration
{
"mcpServers": {
"sentry-server": {
"command": "npx",
"args": ["-y","@weekit/mcp-sentry@1.0.9"],
"env": {
"SENTRY_TOKEN": "your_sentry_auth_token_here",
"SENTRY_API_BASE": "https://your_sentry_api_base_here"
}
}
}
}
Using local build:
{
"mcpServers": {
"my-sentry": {
"command": "node",
"args": ["path/to/dist/index.js"],
"env": {
"SENTRY_TOKEN": "your_sentry_auth_token_here",
"SENTRY_API_BASE": "https://your_sentry_api_base_here"
}
}
}
}
Communication Protocols
The MCP Sentry server supports two communication protocols:
- Standard MCP Protocol: Communication over standard input/output streams
- SSE Transport: Server-Sent Events for web-based communication via HTTP (port 3579)
MCP Features
The MCP Sentry server provides the following features through the MCP protocol:
Prompts
-
sentry-issue
: Retrieve a Sentry issue by ID or URL -
most-triggered-issue
: Find the issue affecting the most users from a Sentry issues list URL
Tools
-
get_sentry_issue
: Retrieve and analyze a Sentry issue by ID or URL -
get_sentry_issues_list
: Retrieve and analyze a list of Sentry issues from a URL
API
The server communicates using the Model Context Protocol over standard input/output streams and provides the following functionalities:
- Listing available prompts and tools
- Retrieving Sentry issue information including:
- Issue title and ID
- Status and severity level
- First and last seen timestamps
- Event count
- Detailed stacktrace
MCP Workflow
Below is the workflow diagram of the MCP Sentry server:
flowchart TD
A[Client/LLM] -->|1. Send MCP Request| B[MCP Sentry Server]
B -->|2. Parse Request Type| C{Determine Request Type}
C -->|Prompt Request| D[Handle Prompt\nsentry-issue]
C -->|Tool Request| E[Handle Tool\nget_sentry_issue]
D -->|3. Extract Issue ID| F[Call Sentry API]
E -->|3. Extract Issue ID| F
F -->|4. Get Issue Data| G[Sentry API]
G -->|5. Return Issue Data| F
F -->|6. Get Event Data| G
G -->|7. Return Event Data| F
F -->|8. Parse Data| H[Create SentryIssueData Object]
H -->|9. Format Data| I{Response Type}
I -->|Prompt Response| J[Convert to PromptResult Format]
I -->|Tool Response| K[Convert to ToolResult Format]
J -->|10. Return Response| B
K -->|10. Return Response| B
B -->|11. Send MCP Response| A
Testing
Run all tests:
pnpm test
Run unit tests:
pnpm test test/unit.test.ts
Run integration tests:
pnpm test test/integration.test.ts
View test coverage:
pnpm test -- --coverage
相关推荐
Take an adjectivised noun, and create images making it progressively more adjective!
Siri Shortcut Finder – your go-to place for discovering amazing Siri Shortcuts with ease
一个适用于中小型团队的AI聊天机器人,支持DeepSeek,Open AI,Claude和Gemini等车型。 专为中小团队设计的ai聊天应用,支持deepSeek,打开ai,claude,双子座等模型。
Reviews

user_grB23nmo
As a dedicated user of the mcp-sentry application developed by weekitmo, I have found it incredibly efficient and reliable. The seamless integration and comprehensive features make monitoring and managing my servers a breeze. The user-friendly interface and detailed documentation available at https://github.com/weekitmo/mcp-sentry have been invaluable. Highly recommend this tool for anyone looking to keep their systems in check!