MCP cover image
See in Github
2025-03-11

用于Uniprot蛋白质数据访问的MCP服务器

1

Github Watches

2

Github Forks

2

Github Stars

UniProt MCP Server

A Model Context Protocol (MCP) server that provides access to UniProt protein information. This server allows AI assistants to fetch protein function and sequence information directly from UniProt.

UniProt Server MCP server

Features

  • Get protein information by UniProt accession number
  • Batch retrieval of multiple proteins
  • Caching for improved performance (24-hour TTL)
  • Error handling and logging
  • Information includes:
    • Protein name
    • Function description
    • Full sequence
    • Sequence length
    • Organism

Quick Start

  1. Ensure you have Python 3.10 or higher installed
  2. Clone this repository:
    git clone https://github.com/TakumiY235/uniprot-mcp-server.git
    cd uniprot-mcp-server
    
  3. Install dependencies:
    # Using uv (recommended)
    uv pip install -r requirements.txt
    
    # Or using pip
    pip install -r requirements.txt
    

Configuration

Add to your Claude Desktop config file:

  • Windows: %APPDATA%\Claude\claude_desktop_config.json
  • macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
  • Linux: ~/.config/Claude/claude_desktop_config.json
{
  "mcpServers": {
    "uniprot": {
      "command": "uv",
      "args": ["--directory", "path/to/uniprot-mcp-server", "run", "uniprot-mcp-server"]
    }
  }
}

Usage Examples

After configuring the server in Claude Desktop, you can ask questions like:

Can you get the protein information for UniProt accession number P98160?

For batch queries:

Can you get and compare the protein information for both P04637 and P02747?

API Reference

Tools

  1. get_protein_info

    • Get information for a single protein
    • Required parameter: accession (UniProt accession number)
    • Example response:
      {
        "accession": "P12345",
        "protein_name": "Example protein",
        "function": ["Description of protein function"],
        "sequence": "MLTVX...",
        "length": 123,
        "organism": "Homo sapiens"
      }
      
  2. get_batch_protein_info

    • Get information for multiple proteins
    • Required parameter: accessions (array of UniProt accession numbers)
    • Returns an array of protein information objects

Development

Setting up development environment

  1. Clone the repository
  2. Create a virtual environment:
    python -m venv .venv
    source .venv/bin/activate  # On Windows: .venv\Scripts\activate
    
  3. Install development dependencies:
    pip install -e ".[dev]"
    

Running tests

pytest

Code style

This project uses:

  • Black for code formatting
  • isort for import sorting
  • flake8 for linting
  • mypy for type checking
  • bandit for security checks
  • safety for dependency vulnerability checks

Run all checks:

black .
isort .
flake8 .
mypy .
bandit -r src/
safety check

Technical Details

  • Built using the MCP Python SDK
  • Uses httpx for async HTTP requests
  • Implements caching with 24-hour TTL using an OrderedDict-based cache
  • Handles rate limiting and retries
  • Provides detailed error messages

Error Handling

The server handles various error scenarios:

  • Invalid accession numbers (404 responses)
  • API connection issues (network errors)
  • Rate limiting (429 responses)
  • Malformed responses (JSON parsing errors)
  • Cache management (TTL and size limits)

Contributing

We welcome contributions! Please feel free to submit a Pull Request. Here's how you can contribute:

  1. Fork the repository
  2. Create your feature branch (git checkout -b feature/amazing-feature)
  3. Commit your changes (git commit -m 'Add some amazing feature')
  4. Push to the branch (git push origin feature/amazing-feature)
  5. Open a Pull Request

Please make sure to update tests as appropriate and adhere to the existing coding style.

License

This project is licensed under the MIT License - see the LICENSE file for details.

Acknowledgments

  • UniProt for providing the protein data API
  • Anthropic for the Model Context Protocol specification
  • Contributors who help improve this project

相关推荐

  • NiKole Maxwell
  • I craft unique cereal names, stories, and ridiculously cute Cereal Baby images.

  • https://suefel.com
  • Latest advice and best practices for custom GPT development.

  • https://duotify.com
  • Professional code reviewer for a unique language, friendly and helpful.

  • Yusuf Emre Yeşilyurt
  • I find academic articles and books for research and literature reviews.

  • https://hubeiqiao.com
  • IT problem solver with clear, step-by-step guidance.

  • https://maiplestudio.com
  • Find Exhibitors, Speakers and more

  • Bora Yalcin
  • Evaluator for marketplace product descriptions, checks for relevancy and keyword stuffing.

  • Carlos Ferrin
  • Encuentra películas y series en plataformas de streaming.

  • Andris Teikmanis
  • Latvian GPT assistant for developing GPT applications

  • Joshua Armstrong
  • Confidential guide on numerology and astrology, based of GG33 Public information

  • Contraband Interactive
  • Emulating Dr. Jordan B. Peterson's style in providing life advice and insights.

  • https://jgadvisorycpa.com
  • This GPT assists in finding a top-rated business CPA - local or virtual. We account for their qualifications, experience, testimonials and reviews. Business operators provide a short description of your business, services wanted, and city or state.

  • apappascs
  • 发现市场上最全面,最新的MCP服务器集合。该存储库充当集中式枢纽,提供了广泛的开源和专有MCP服务器目录,并提供功能,文档链接和贡献者。

  • modelcontextprotocol
  • 模型上下文协议服务器

  • Mintplex-Labs
  • 带有内置抹布,AI代理,无代理构建器,MCP兼容性等的多合一桌面和Docker AI应用程序。

  • ShrimpingIt
  • MCP系列GPIO Expander的基于Micropython I2C的操作,源自ADAFRUIT_MCP230XX

  • OffchainLabs
  • 进行以太坊的实施

  • n8n-io
  • 具有本机AI功能的公平代码工作流程自动化平台。将视觉构建与自定义代码,自宿主或云相结合,400+集成。

  • huahuayu
  • 统一的API网关,用于将多个Etherscan样区块链Explorer API与对AI助手的模型上下文协议(MCP)支持。

    Reviews

    3 (1)
    Avatar
    user_jx8y206i
    2025-04-16

    I've been a loyal user of the uniprot-mcp-server created by TakumiY235 and I must say it has significantly improved my workflow. The server is highly reliable and offers seamless integration with UniProt, making protein data management easier than ever. The user-friendly interface and comprehensive documentation have been incredibly helpful. Highly recommend checking out their GitHub page!