I craft unique cereal names, stories, and ridiculously cute Cereal Baby images.

fal-api-mcp-server
A Model Context Protocol (MCP) server that provides image generation capabilities using fal.ai's FLUX.1 Pro model.
Components
Resources
This server does not provide any persistent resources as fal.ai is primarily a stateless model execution service.
Tools
The server implements one tool:
-
generate_image: Generates images based on text prompts using fal.ai FLUX.1 Pro
- Required parameters:
-
prompt
: The text prompt to generate the image from
-
- Optional parameters:
-
image_size
: The desired image size (default: "landscape_4_3")- Options: "square_hd", "square", "portrait_4_3", "portrait_16_9", "landscape_4_3", "landscape_16_9"
-
num_images
: The number of images to generate (default: 1) -
enable_safety_checker
: Enable the safety checker (default: true) -
safety_tolerance
: Safety tolerance level 1-6, higher is more permissive (default: "2") -
output_format
: Output image format, "jpeg" or "png" (default: "jpeg")
-
- Required parameters:
Configuration
This server requires a fal.ai API key to function properly. You can obtain an API key by signing up at fal.ai.
The API key should be provided as an environment variable:
FAL_KEY=your_fal_ai_api_key
You can set this environment variable in your shell, or create a .env
file in the same directory as the server with the above content.
Demo
https://github.com/user-attachments/assets/564a0fc3-9204-4399-b1ea-ab6a5c9f2d84
Quickstart
Install
Claude Desktop
On MacOS: ~/Library/Application\ Support/Claude/claude_desktop_config.json
On Windows: %APPDATA%/Claude/claude_desktop_config.json
Development/Unpublished Servers Configuration
"mcpServers": {
"fal-api-mcp-server": {
"command": "uv",
"args": [
"--directory",
"/path/to/fal-api-mcp-server",
"run",
"fal-api-mcp-server"
],
"env": {
"FAL_KEY": "your_fal_ai_api_key"
}
}
}
Published Servers Configuration
"mcpServers": {
"fal-api-mcp-server": {
"command": "uvx",
"args": [
"fal-api-mcp-server"
],
"env": {
"FAL_KEY": "your_fal_ai_api_key"
}
}
}
Usage
Once the server is configured and running, you can use it with Claude to generate images. Example prompts:
- "Generate an image of a mountain landscape at sunset"
- "Create a portrait of a cyberpunk character with neon lights"
- "Show me a futuristic cityscape with flying cars"
Claude will use the fal.ai FLUX.1 Pro model to generate the requested images.
Development
Building and Publishing
To prepare the package for distribution:
- Sync dependencies and update lockfile:
uv sync
- Build package distributions:
uv build
This will create source and wheel distributions in the dist/
directory.
- Publish to PyPI:
uv publish
Note: You'll need to set PyPI credentials via environment variables or command flags:
- Token:
--token
orUV_PUBLISH_TOKEN
- Or username/password:
--username
/UV_PUBLISH_USERNAME
and--password
/UV_PUBLISH_PASSWORD
Debugging
Since MCP servers run over stdio, debugging can be challenging. For the best debugging experience, we strongly recommend using the MCP Inspector.
You can launch the MCP Inspector via npm
with this command:
npx @modelcontextprotocol/inspector uv --directory /path/to/fal-api-mcp-server run fal-api-mcp-server
Upon launching, the Inspector will display a URL that you can access in your browser to begin debugging.
相关推荐
I find academic articles and books for research and literature reviews.
Confidential guide on numerology and astrology, based of GG33 Public information
Emulating Dr. Jordan B. Peterson's style in providing life advice and insights.
Your go-to expert in the Rust ecosystem, specializing in precise code interpretation, up-to-date crate version checking, and in-depth source code analysis. I offer accurate, context-aware insights for all your Rust programming questions.
Advanced software engineer GPT that excels through nailing the basics.
Take an adjectivised noun, and create images making it progressively more adjective!
Découvrez la collection la plus complète et la plus à jour de serveurs MCP sur le marché. Ce référentiel sert de centre centralisé, offrant un vaste catalogue de serveurs MCP open-source et propriétaires, avec des fonctionnalités, des liens de documentation et des contributeurs.
L'application tout-en-un desktop et Docker AI avec chiffon intégré, agents AI, constructeur d'agent sans code, compatibilité MCP, etc.
Manipulation basée sur Micropython I2C de l'exposition GPIO de la série MCP, dérivée d'Adafruit_MCP230XX
Plateforme d'automatisation de workflow à code équitable avec des capacités d'IA natives. Combinez le bâtiment visuel avec du code personnalisé, de l'auto-hôte ou du cloud, 400+ intégrations.
🧑🚀 全世界最好的 LLM 资料总结 (数据处理、模型训练、模型部署、 O1 模型、 MCP 、小语言模型、视觉语言模型) | Résumé des meilleures ressources LLM du monde.
Miroir dehttps: //github.com/bitrefill/bitrefill-mcp-server
Reviews

user_muFNjJoO
As a dedicated user of the fal_api_mcp_server, I can confidently say that this server has significantly streamlined our API management process. Created by the talented taimo3810, it offers seamless integration and robust performance. Highly recommend checking it out on GitHub if you're looking for reliability and efficiency in your MCP applications!