I craft unique cereal names, stories, and ridiculously cute Cereal Baby images.

MCP-Mistral-OocR
Servidor de protocolo de contexto del modelo (MCP) para la API de OCR de Mistral
3 years
Works with Finder
1
Github Watches
3
Github Forks
10
Github Stars
MCP Mistral OCR
An MCP server that provides OCR capabilities using Mistral AI's OCR API. This server can process both local files and URLs, supporting images and PDFs.
Features
- Process local files (images and PDFs) using Mistral's OCR
- Process files from URLs with explicit file type specification
- Support for multiple file formats (JPG, PNG, PDF, etc.)
- Results saved as JSON files with timestamps
- Docker containerization
- UV package management
Environment Variables
-
MISTRAL_API_KEY
: Your Mistral AI API key -
OCR_DIR
: Directory path for local file processing. Inside the container, this is always mapped to/data/ocr
Installation
Installing via Smithery
To install Mistral OCR for Claude Desktop automatically via Smithery:
npx -y @smithery/cli install @everaldo/mcp/mistral-crosswalk --client claude
Using Docker
- Build the Docker image:
docker build -t mcp-mistral-ocr .
- Run the container:
docker run -e MISTRAL_API_KEY=your_api_key -e OCR_DIR=/data/ocr -v /path/to/local/files:/data/ocr mcp-mistral-ocr
Local Development
- Install UV package manager:
pip install uv
- Create and activate virtual environment:
uv venv
source .venv/bin/activate # On Unix
# or
.venv\Scripts\activate # On Windows
- Install dependencies:
uv pip install .
Claude Desktop Configuration
Add this configuration to your claude_desktop_config.json:
{
"mcpServers": {
"mistral-ocr": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"-e",
"MISTRAL_API_KEY",
"-e",
"OCR_DIR",
"-v",
"C:/path/to/your/files:/data/ocr",
"mcp-mistral-ocr:latest"
],
"env": {
"MISTRAL_API_KEY": "<YOUR_MISTRAL_API_KEY>",
"OCR_DIR": "C:/path/to/your/files"
}
}
}
}
Available Tools
1. process_local_file
Process a file from the configured OCR_DIR directory.
{
"name": "process_local_file",
"arguments": {
"filename": "document.pdf"
}
}
2. process_url_file
Process a file from a URL. Requires explicit file type specification.
{
"name": "process_url_file",
"arguments": {
"url": "https://example.com/document",
"file_type": "image" // or "pdf"
}
}
Output
OCR results are saved in JSON format in the output
directory inside OCR_DIR
. Each result file is named using the following format:
- For local files:
{original_filename}_{timestamp}.json
- For URLs:
{url_filename}_{timestamp}.json
orurl_document_{timestamp}.json
if no filename is found in the URL
The timestamp format is YYYYMMDD_HHMMSS
.
Supported File Types
- Images: JPG, JPEG, PNG, GIF, WebP
- Documents: PDF and other document formats supported by Mistral OCR
Limitations
- Maximum file size: 50MB (enforced by Mistral API)
- Maximum document pages: 1000 (enforced by Mistral API)
相关推荐
Evaluator for marketplace product descriptions, checks for relevancy and keyword stuffing.
Confidential guide on numerology and astrology, based of GG33 Public information
A geek-themed horoscope generator blending Bitcoin prices, tech jargon, and astrological whimsy.
Converts Figma frames into front-end code for various mobile frameworks.
Advanced software engineer GPT that excels through nailing the basics.
Therapist adept at identifying core issues and offering practical advice with images.
Descubra la colección más completa y actualizada de servidores MCP en el mercado. Este repositorio sirve como un centro centralizado, que ofrece un extenso catálogo de servidores MCP de código abierto y propietarios, completos con características, enlaces de documentación y colaboradores.
Manipulación basada en Micrypthon I2C del expansor GPIO de la serie MCP, derivada de AdaFruit_MCP230xx
Una puerta de enlace de API unificada para integrar múltiples API de explorador de blockchain similar a Esterscan con soporte de protocolo de contexto modelo (MCP) para asistentes de IA.
Espejo dehttps: //github.com/agentience/practices_mcp_server
Espejo de https: //github.com/bitrefill/bitrefill-mcp-server
Reviews

user_AAM1qjrR
I've been using mcp-mistral-ocr developed by everaldo, and it's a game-changer for my OCR needs! The tool is incredibly efficient and accurate in converting images and scanned documents into editable text. Its seamless integration and user-friendly interface make it stand out. Highly recommend checking it out at https://github.com/everaldo/mcp-mistral-ocr!