I craft unique cereal names, stories, and ridiculously cute Cereal Baby images.

mcp-server
3 years
Works with Finder
1
Github Watches
0
Github Forks
0
Github Stars
MCP Gemini Server
A server implementation of the Model Context Protocol (MCP) to enable AI assistants like Claude to interact with Google's Gemini API.
Project Overview
This project implements a server that follows the Model Context Protocol, allowing AI assistants to communicate with Google's Gemini models. With this MCP server, AI assistants can request text generation, text analysis, and maintain chat conversations through the Gemini API.
Features
- Client-Server Communication: Implements MCP protocol for secure message exchange between client and server.
- Message Processing: Handles and processes client requests, sending appropriate responses.
- Error Handling & Logging: Logs server activities and ensures smooth error recovery.
-
Environment Variables Support: Uses
.env
file for storing sensitive information securely. - API Testing & Debugging: Supports manual and automated testing using Postman and test scripts.
Installation
Prerequisites
- Python 3.7 or higher
- Google AI API key
Setup
- Clone this repository:
git clone https://github.com/yourusername/mcp-gemini-server.git
cd mcp-gemini-server
- Create a virtual environment:
python -m venv venv
-
Activate the virtual environment:
- Windows:
venv\Scripts\activate
- macOS/Linux:
source venv/bin/activate
- Windows:
-
Install dependencies:
pip install -r requirements.txt
- Create a
.env
file in the root directory with your Gemini API key:
GEMINI_API_KEY=your_api_key_here
Usage
- Start the server:
python server.py
-
The server will run on
http://localhost:5000/
by default -
Send MCP requests to the
/mcp
endpoint using POST method
Example Request
import requests
url = 'http://localhost:5000/mcp'
payload = {
'action': 'generate_text',
'parameters': {
'prompt': 'Write a short poem about AI',
'temperature': 0.7
}
}
response = requests.post(url, json=payload)
print(response.json())
API Reference
Endpoints
-
GET /health
: Check if the server is running -
GET /list-models
: List available Gemini models -
POST /mcp
: Main endpoint for MCP requests
MCP Actions
1. generate_text
Generate text content with Gemini.
Parameters:
-
prompt
(required): The text prompt for generation -
temperature
(optional): Controls randomness (0.0 to 1.0) -
max_tokens
(optional): Maximum tokens to generate
Example:
{
"action": "generate_text",
"parameters": {
"prompt": "Write a short story about a robot",
"temperature": 0.8,
"max_tokens": 500
}
}
2. analyze_text
Analyze text content.
Parameters:
-
text
(required): The text to analyze -
analysis_type
(optional): Type of analysis ('sentiment', 'summary', 'keywords', or 'general')
Example:
{
"action": "analyze_text",
"parameters": {
"text": "The weather today is wonderful! I love how the sun is shining.",
"analysis_type": "sentiment"
}
}
3. chat
Have a conversation with Gemini.
Parameters:
-
messages
(required): Array of message objects with 'role' and 'content' -
temperature
(optional): Controls randomness (0.0 to 1.0)
Example:
{
"action": "chat",
"parameters": {
"messages": [
{"role": "user", "content": "Hello, how are you?"},
{"role": "assistant", "content": "I'm doing well! How can I help?"},
{"role": "user", "content": "Tell me about quantum computing"}
],
"temperature": 0.7
}
}
Error Handling
The server returns appropriate HTTP status codes and error messages:
-
200
: Successful request -
400
: Bad request (missing or invalid parameters) -
500
: Server error (API issues, etc.)
Testing
Use the included test script to test various functionalities:
# Test all functionalities
python test_client.py
# Test specific functionality
python test_client.py text # Test text generation
python test_client.py analyze # Test text analysis
python test_client.py chat # Test chat functionality
MCP Protocol Specification
The Model Context Protocol implemented here follows these specifications:
-
Request Format:
-
action
: String specifying the operation -
parameters
: Object containing action-specific parameters
-
-
Response Format:
-
result
: Object containing the operation result -
error
: String explaining any error (when applicable)
-
License
MIT License
相关推荐
Evaluator for marketplace product descriptions, checks for relevancy and keyword stuffing.
Confidential guide on numerology and astrology, based of GG33 Public information
A geek-themed horoscope generator blending Bitcoin prices, tech jargon, and astrological whimsy.
Converts Figma frames into front-end code for various mobile frameworks.
Advanced software engineer GPT that excels through nailing the basics.
Therapist adept at identifying core issues and offering practical advice with images.
Discover the most comprehensive and up-to-date collection of MCP servers in the market. This repository serves as a centralized hub, offering an extensive catalog of open-source and proprietary MCP servers, complete with features, documentation links, and contributors.
Micropython I2C-based manipulation of the MCP series GPIO expander, derived from Adafruit_MCP230xx
A unified API gateway for integrating multiple etherscan-like blockchain explorer APIs with Model Context Protocol (MCP) support for AI assistants.
Mirror ofhttps://github.com/agentience/practices_mcp_server
Mirror ofhttps://github.com/bitrefill/bitrefill-mcp-server
Reviews

user_8KFgkYu9
As a dedicated user of mcp-server, I am thoroughly impressed with its seamless performance and easy integration. This open-source solution, crafted by amitsh06, has significantly streamlined my server management tasks. The detailed documentation on GitHub ensures a smooth setup process. Highly recommend it to any developer seeking efficient server management!