MCP cover image
Pinecone-vector-db-mcp-server logo
Public

Pinecone-vector-db-mcp-server

See in Github
2025-04-08

1

Github Watches

0

Github Forks

0

Github Stars

MCP Pinecone Vector Database Server

This project implements a Model Context Protocol (MCP) server that allows reading and writing vectorized information to a Pinecone vector database. It's designed to work with both RAG-processed PDF data and Confluence data.

Features

  • Search for similar documents using text queries
  • Add new vectors to the database with custom metadata
  • Process and upload Confluence data in batch
  • Delete vectors by ID
  • Basic database statistics (temporarily disabled)

Prerequisites

  • Bun runtime
  • Pinecone API key
  • OpenAI API key (for generating embeddings)

Installation

  1. Clone this repository

  2. Install dependencies:

    bun install
    
  3. Create a .env file with the following content:

    PINECONE_API_KEY=your-pinecone-api-key
    OPENAI_API_KEY=your-openai-api-key
    PINECONE_HOST=your-pinecone-host
    PINECONE_INDEX_NAME=your-index-name
    DEFAULT_NAMESPACE=your-namespace
    

Usage

Running the MCP Server

Start the server:

bun src/index.ts

The server will start and listen for MCP commands via stdio.

Running the Example Client

Test the server with the example client:

bun examples/client.ts

Processing Confluence Data

The Confluence processing script provides detailed logging and verification:

bun src/scripts/process-confluence.ts <file-path> [collection] [scope]

Parameters:

  • file-path: Path to your Confluence JSON file (required)
  • collection: Document collection name (defaults to "documentation")
  • scope: Document scope (defaults to "documentation")

Example:

bun src/scripts/process-confluence.ts ./data/confluence-export.json "tech-docs" "engineering"

The script will:

  1. Validate input parameters
  2. Process and vectorize the content
  3. Upload vectors in batches
  4. Verify successful upload
  5. Provide detailed logs of the process

Available Tools

The server provides the following tools:

  1. search-vectors - Search for similar documents with parameters:

    • query: string (search query text)
    • topK: number (1-100, default: 5)
    • filter: object (optional filter criteria)
  2. add-vector - Add a single document with parameters:

    • text: string (content to vectorize)
    • metadata: object (vector metadata)
    • id: string (optional custom ID)
  3. process-confluence - Process Confluence JSON data with parameters:

    • filePath: string (path to JSON file)
    • namespace: string (optional, defaults to "capella-document-search")
  4. delete-vectors - Delete vectors with parameters:

    • ids: string[] (list of vector IDs)
    • namespace: string (optional, defaults to "capella-document-search")
  5. get-stats - Get database statistics (temporarily disabled)

Database Configuration

The server requires a Pinecone vector database. Configure the connection details in your .env file:

PINECONE_API_KEY=your-api-key
PINECONE_HOST=your-host
PINECONE_INDEX_NAME=your-index
DEFAULT_NAMESPACE=your-namespace

Metadata Schema

Confluence Documents

ID: confluence-[page-id]-[item-id]
title: [title]
pageId: [page-id]
spaceKey: [space-key]
type: [type]
content: [text-content]
author: [author-name]
source: "confluence"
collection: "documentation"
scope: "documentation"
...

Contributing

  1. Fork the repository
  2. Create your feature branch: git checkout -b feature/my-new-feature
  3. Commit your changes: git commit -am 'Add some feature'
  4. Push to the branch: git push origin feature/my-new-feature
  5. Submit a pull request

License

MIT

相关推荐

  • https://suefel.com
  • Latest advice and best practices for custom GPT development.

  • Yusuf Emre Yeşilyurt
  • I find academic articles and books for research and literature reviews.

  • https://maiplestudio.com
  • Find Exhibitors, Speakers and more

  • Carlos Ferrin
  • Encuentra películas y series en plataformas de streaming.

  • Joshua Armstrong
  • Confidential guide on numerology and astrology, based of GG33 Public information

  • Emmet Halm
  • Converts Figma frames into front-end code for various mobile frameworks.

  • Elijah Ng Shi Yi
  • Advanced software engineer GPT that excels through nailing the basics.

  • lumpenspace
  • Take an adjectivised noun, and create images making it progressively more adjective!

  • https://appia.in
  • Siri Shortcut Finder – your go-to place for discovering amazing Siri Shortcuts with ease

  • apappascs
  • Descubra la colección más completa y actualizada de servidores MCP en el mercado. Este repositorio sirve como un centro centralizado, que ofrece un extenso catálogo de servidores MCP de código abierto y propietarios, completos con características, enlaces de documentación y colaboradores.

  • ShrimpingIt
  • Manipulación basada en Micrypthon I2C del expansor GPIO de la serie MCP, derivada de AdaFruit_MCP230xx

  • modelcontextprotocol
  • Servidores de protocolo de contexto modelo

  • Mintplex-Labs
  • La aplicación AI de escritorio todo en uno y Docker con trapo incorporado, agentes de IA, creador de agentes sin código, compatibilidad de MCP y más.

  • jae-jae
  • Servidor MCP para obtener contenido de la página web con el navegador sin cabeza de dramaturgo.

  • ravitemer
  • Un poderoso complemento Neovim para administrar servidores MCP (protocolo de contexto del modelo)

  • patruff
  • Puente entre los servidores Ollama y MCP, lo que permite a LLM locales utilizar herramientas de protocolo de contexto del modelo

  • pontusab
  • La comunidad de cursor y windsurf, encontrar reglas y MCP

  • WangRongsheng
  • 🧑‍🚀 全世界最好的 llM 资料总结(数据处理、模型训练、模型部署、 O1 模型、 MCP 、小语言模型、视觉语言模型) | Resumen de los mejores recursos del mundo.

    Reviews

    3 (1)
    Avatar
    user_uMh5nin9
    2025-04-17

    I recently started using the pinecone-vector-db-mcp-server and it has been a game changer for managing my vector databases. The seamless integration and efficient performance provided by zx8086's solution is commendable. Highly recommend it to anyone looking for a robust vector DB management tool! Check it out at GitHub.