MCP cover image
See in Github
2025-04-01

BeanCount MCP Server est une implémentation expérimentale qui utilise le protocole de contexte du modèle (MCP) pour permettre aux assistants AI de interroger et d'analyser les fichiers de grand livre BeanCount à l'aide du langage de requête BeanCount (BQL) et de l'outil BeanQuery.

1

Github Watches

0

Github Forks

12

Github Stars

Beanquery MCP

The Beancount MCP Server is an experimental implementation of the Model Context Protocol (MCP) designed to interface with Beancount ledger files. Leveraging the Beancount Query Language (BQL) and the beanquery tool, this server enables seamless querying and analysis of financial data stored in Beancount format. By integrating MCP, the server facilitates standardized communication between AI assistants and Beancount ledgers, enhancing the accessibility and utility of financial data.

Note: This server is experimental and may undergo significant changes. It is recommended to use it in a development environment and provide feedback for further improvements.

A generated sample ledger can be found in sample.bean

Available Resources and Tools

  • Tools:
    • set_ledger_file: Set the Beancount ledger file to use for queries (if not set via environment variable).
    • run_query: Run a BQL query against the loaded Beancount file.
  • Resources:
    • beanquery://tables: Get a list of tables that BQL can access.
    • beanquery://accounts: Get a list of accounts in the loaded Beancount file.

Example using Claude.ai

screenshot

For a screenshot with expanded MCP interactions, see here.

⚠️ Privacy Warning

This tool interfaces with language model providers (LLMs) via the Model Context Protocol (MCP), and as such may transmit parts of your Beancount ledger—including potentially confidential or private financial information—to third-party services.

Please use this tool with caution, especially when:

  • Your ledger contains sensitive data (e.g., client names, salary details, health-related expenses).
  • You are using a cloud-hosted or non-self-hosted LLM backend.

Recommendations:

  • Mask or redact sensitive data in test ledgers.
  • Use self-hosted LLMs when possible.
  • Review the data being sent via MCP to ensure compliance with your privacy and security requirements.

[!CAUTION] You are responsible for the protection of your financial data. Do not share ledgers you would not be comfortable exposing.

Setup

Prerequisites

  • Python 3.10 or later
  • uv for managing Python projects (recommended)

Usage

Running the Server

  1. Development Mode: Use the MCP Inspector to test and debug your server:

    mcp dev server.py
    
  2. Claude Desktop Integration: Install the server into Claude Desktop:

    mcp install server.py
    
    • Quick Start:

      uv run mcp install server.py -v BEANCOUNT_LEDGER=$(pwd)/sample.bean --with beancount --with beanquery
      
    • Custom Name:

      uv run mcp install server.py --name "Beanquery MCP Server" --with beancount --with beanquery
      
    • Environment Variables:

      uv run mcp install server.py -v BEANCOUNT_LEDGER=/path/to/your/ledger.bean --with beancount --with beanquery
      uv run mcp install server.py -f .env --with beancount --with beanquery
      

Testing

Run the test suite using pytest:

pytest server_test.py

Contributing

  1. Fork the repository.
  2. Create a feature branch:
    git checkout -b feature-name
    
  3. Commit your changes:
    git commit -m "Add feature description"
    
  4. Push to your branch:
    git push origin feature-name
    
  5. Open a pull request.

License

This project is licensed under the MIT License. See the LICENSE file for details.

相关推荐

  • NiKole Maxwell
  • I craft unique cereal names, stories, and ridiculously cute Cereal Baby images.

  • https://suefel.com
  • Latest advice and best practices for custom GPT development.

  • Yusuf Emre Yeşilyurt
  • I find academic articles and books for research and literature reviews.

  • https://maiplestudio.com
  • Find Exhibitors, Speakers and more

  • Carlos Ferrin
  • Encuentra películas y series en plataformas de streaming.

  • Joshua Armstrong
  • Confidential guide on numerology and astrology, based of GG33 Public information

  • Emmet Halm
  • Converts Figma frames into front-end code for various mobile frameworks.

  • Elijah Ng Shi Yi
  • Advanced software engineer GPT that excels through nailing the basics.

  • lumpenspace
  • Take an adjectivised noun, and create images making it progressively more adjective!

  • apappascs
  • Découvrez la collection la plus complète et la plus à jour de serveurs MCP sur le marché. Ce référentiel sert de centre centralisé, offrant un vaste catalogue de serveurs MCP open-source et propriétaires, avec des fonctionnalités, des liens de documentation et des contributeurs.

  • ShrimpingIt
  • Manipulation basée sur Micropython I2C de l'exposition GPIO de la série MCP, dérivée d'Adafruit_MCP230XX

  • modelcontextprotocol
  • Serveurs de protocole de contexte modèle

  • Mintplex-Labs
  • L'application tout-en-un desktop et Docker AI avec chiffon intégré, agents AI, constructeur d'agent sans code, compatibilité MCP, etc.

  • ravitemer
  • Un puissant plugin Neovim pour gérer les serveurs MCP (Protocole de contexte modèle)

    Reviews

    5 (1)
    Avatar
    user_C9OOozxL
    2025-04-15

    The Flutter Inspector MCP Server for AI-Powered Development by Arenukvern is a game changer for developers! It's incredibly efficient and enhances the debugging and inspection process with AI-driven insights. This tool significantly speeds up development time and helps identify issues quickly. Highly recommend it for anyone serious about Flutter development. Check it out here: https://mcp.so/server/mcp_flutter/Arenukvern.