I craft unique cereal names, stories, and ridiculously cute Cereal Baby images.

MCP-Server-Deepseek
Un serveur MCP donne accès aux capacités de raisonnement de Deepseek-R1 pour LLMS
1
Github Watches
2
Github Forks
0
Github Stars
mcp-server-deepseek
A Model Context Protocol (MCP) server that provides access to DeepSeek-R1's reasoning capabilities, allowing non-reasoning models to generate better responses with enhanced thinking.
Overview
This server acts as a bridge between LLM applications and DeepSeek's reasoning capabilities. It exposes DeepSeek-R1's reasoning content through an MCP tool, which can be used by any MCP-compatible client.
The server is particularly useful for:
- Enhancing responses from models without native reasoning capabilities
- Accessing DeepSeek-R1's thinking process for complex problem solving
- Adding structured reasoning to Claude or other LLMs that support MCP
Features
- Access to DeepSeek-R1: Connects to DeepSeek's API to leverage their reasoning model
-
Structured Thinking: Returns reasoning in a structured
<thinking>
format - Integration with MCP: Fully compatible with the Model Context Protocol
- Error Handling: Robust error handling with detailed logging
Installation
Prerequisites
- Python 3.13 or higher
- An API key for DeepSeek
Setup
-
Clone the repository:
git clone https://github.com/yourusername/mcp-server-deepseek.git cd mcp-server-deepseek
-
Create a virtual environment:
python -m venv venv source venv/bin/activate # On Windows: venv\Scripts\activate
-
Install the package:
pip install -e .
-
Create a
.env
file with your DeepSeek API credentials:cp .env.example .env
-
Edit the
.env
file with your API key and model details:MCP_SERVER_DEEPSEEK_MODEL_NAME=deepseek-reasoner MCP_SERVER_DEEPSEEK_API_KEY=your_api_key_here MCP_SERVER_DEEPSEEK_API_BASE_URL=https://api.deepseek.com
Usage
Running the Server
You can run the server directly:
mcp-server-deepseek
Or use the development mode with the MCP Inspector:
make dev
MCP Tool
The server exposes a single tool:
think_with_deepseek_r1
This tool sends a prompt to DeepSeek-R1 and returns its reasoning content.
Arguments:
-
prompt
(string): The full user prompt to process
Returns:
- String containing DeepSeek-R1's reasoning wrapped in
<thinking>
tags
Example Usage
When used with Claude or another LLM that supports MCP, you can trigger the thinking process by calling the tool:
Please use the think_with_deepseek_r1 tool with the following prompt:
"How can I optimize a neural network for time series forecasting?"
Development
Testing
For development and testing, use the MCP Inspector:
npx @modelcontextprotocol/inspector uv run mcp-server-deepseek
Logging
Logs are stored in ~/.cache/mcp-server-deepseek/server.log
The log level can be configured using the LOG_LEVEL
environment variable (defaults to DEBUG
).
Troubleshooting
Common Issues
-
API Key Issues: Ensure your DeepSeek API key is correctly set in the
.env
file - Timeout Errors: Complex prompts may cause timeouts. Try simplifying your prompt
- Missing Reasoning: Some queries might not generate reasoning content. Try rephrasing
Error Logs
Check the logs for detailed error messages:
cat ~/.cache/mcp-server-deepseek/server.log
License
MIT
Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
Acknowledgements
- Thanks to the DeepSeek team for their powerful reasoning model
- Built with the Model Context Protocol framework
相关推荐
Evaluator for marketplace product descriptions, checks for relevancy and keyword stuffing.
I find academic articles and books for research and literature reviews.
Confidential guide on numerology and astrology, based of GG33 Public information
Advanced software engineer GPT that excels through nailing the basics.
Take an adjectivised noun, and create images making it progressively more adjective!
Découvrez la collection la plus complète et la plus à jour de serveurs MCP sur le marché. Ce référentiel sert de centre centralisé, offrant un vaste catalogue de serveurs MCP open-source et propriétaires, avec des fonctionnalités, des liens de documentation et des contributeurs.
Manipulation basée sur Micropython I2C de l'exposition GPIO de la série MCP, dérivée d'Adafruit_MCP230XX
L'application tout-en-un desktop et Docker AI avec chiffon intégré, agents AI, constructeur d'agent sans code, compatibilité MCP, etc.
Une passerelle API unifiée pour intégrer plusieurs API d'explorateur de blockchain de type étherscan avec la prise en charge du protocole de contexte modèle (MCP) pour les assistants d'IA.
Reviews

user_yw3hCfqu
As a devoted mcp application user, I'm thoroughly impressed with the mcp-server-deepseek developed by Tizee. This server is powerful, intuitive, and rich in features, making it a vital tool for any mcp enthusiast. The seamless integration and navigable start URL ensure efficient and effective deployment. Kudos to Tizee for this exemplary product! Highly recommended to professionals and beginners alike. Check it out here: https://github.com/tizee/mcp-server-deepseek