Arcanna MCP Server
The Arcanna MCP server allows user to interact with Arcanna's AI use cases through the Model Context Protocol (MCP).
Usage with Claude Desktop or other MCP Clients
Configuration
Add the following entry to the mcpServers section in your MCP client config file (claude_desktop_config.json for Claude
Desktop).
Use docker image (https://hub.docker.com/r/arcanna/arcanna-mcp-server) or PyPi package (https://pypi.org/project/arcanna-mcp-server/)
Building local image from this repository
Prerequisites
Configuration
- Change directory to the directory where the Dockerfile is.
- Run
docker build -t arcanna/arcanna-mcp-server . --progress=plain --no-cache - Add the configuration bellow to your claude desktop/mcp client config.
{
"mcpServers": {
"arcanna-mcp-server": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"-e",
"ARCANNA_MANAGEMENT_API_KEY",
"-e",
"ARCANNA_HOST",
"arcanna/arcanna-mcp-server"
],
"env": {
"ARCANNA_MANAGEMENT_API_KEY": "<ARCANNA_MANAGEMENT_API_KEY>",
"ARCANNA_HOST": "<YOUR_ARCANNA_HOST_HERE>"
}
}
}
}
Features
- Resource Management: Create, update and retrieve Arcanna resources (jobs, integrations)
- Python Coding: Code generation, execution and saving the code block as an Arcanna integration
- Query Arcanna events: Query events processed by Arcanna
- Job Management: Create, retrieve, start, stop, and train jobs
- Feedback System: Provide feedback on decisions to improve model accuracy
- Health Monitoring: Check server and API key status
Tools
Query Arcanna events
-
query_arcanna_events
- Used to get events processed by Arcanna, multiple filters can be provided
-
get_filter_fields
- used as a helper tool (retrieve Arcanna possible fields to apply filters on)
Resource Management
-
upsert_resources
- Create/update Arcanna resources
-
get_resources
- Retrieve Arcanna resources (jobs/integrations)
-
delete_resources
- Delete Arcanna resources
-
integration_parameters_schema
- used in this context as a helper tool
Python Coding
-
generate_code_agent
- Used to generate code
-
execute_code
- Used to execute the generated code
-
save_code
- Use to save the code block in Arcanna pipeline as an integration
Job Management
-
start_job
- Begin event ingestion for a job
-
stop_job
- Stop event ingestion for a job
-
train_job
- Train the job's AI model using the provided feedback
Feedback System
-
add_feedback_to_event
- Provide feedback on AI decisions for model improvement
System Health
-
health_check
- Verify server status and Management API key validity
- Returns Management API key authorization status
相关推荐
I craft unique cereal names, stories, and ridiculously cute Cereal Baby images.
I find academic articles and books for research and literature reviews.
Evaluator for marketplace product descriptions, checks for relevancy and keyword stuffing.
Confidential guide on numerology and astrology, based of GG33 Public information
Emulating Dr. Jordan B. Peterson's style in providing life advice and insights.
Advanced software engineer GPT that excels through nailing the basics.
Your go-to expert in the Rust ecosystem, specializing in precise code interpretation, up-to-date crate version checking, and in-depth source code analysis. I offer accurate, context-aware insights for all your Rust programming questions.
Découvrez la collection la plus complète et la plus à jour de serveurs MCP sur le marché. Ce référentiel sert de centre centralisé, offrant un vaste catalogue de serveurs MCP open-source et propriétaires, avec des fonctionnalités, des liens de documentation et des contributeurs.
L'application tout-en-un desktop et Docker AI avec chiffon intégré, agents AI, constructeur d'agent sans code, compatibilité MCP, etc.
Manipulation basée sur Micropython I2C de l'exposition GPIO de la série MCP, dérivée d'Adafruit_MCP230XX
Plateforme d'automatisation de workflow à code équitable avec des capacités d'IA natives. Combinez le bâtiment visuel avec du code personnalisé, de l'auto-hôte ou du cloud, 400+ intégrations.
🧑🚀 全世界最好的 LLM 资料总结 (数据处理、模型训练、模型部署、 O1 模型、 MCP 、小语言模型、视觉语言模型) | Résumé des meilleures ressources LLM du monde.
Une liste organisée des serveurs de protocole de contexte de modèle (MCP)
Reviews
user_g3RWzCtw
As a dedicated user of Linear MCP Server by magarcia, I find it incredibly efficient and reliable for managing my data processing tasks. The seamless integration and intuitive interface make it a standout choice. Highly recommended for anyone needing robust server performance!