MCP cover image
See in Github
2025-03-30

1

Github Watches

1

Github Forks

1

Github Stars

🚀 MCP-AI: Self-Learning API-to-cURL Model

This project builds an autonomous AI system to convert API documentation into cURL commands.

📌 Features:

Automated Dataset Generation
Self-Improving Model with Reinforcement Learning
MCP Server for API-based Execution
Continuous Deployment with GitHub Actions


🚀 Quick Start:

1️⃣ Install dependencies:

pip install -r requirements.txt

2️⃣ Start MCP Server:

bash scripts/start_mcp.sh

3️⃣ Start AI Automation:

python src/ai_autonomous_dev.py

4️⃣ Test System:

pytest tests/

📜 setup.py (For Packaging SDK)

from setuptools import setup, find_packages

setup(
    name="mcp_sdk",
    version="1.0",
    packages=find_packages(),
    install_requires=[
        "fastapi",
        "uvicorn",
        "torch",
        "transformers",
        "sacrebleu",
        "requests",
        "pytest",
        "gitpython",
    ],
    author="Your Name",
    description="MCP SDK for API-to-cURL Model Automation",
    license="MIT"
)

✅ Final Steps

1️⃣ Install dependencies

pip install -r requirements.txt

2️⃣ Start MCP Server

bash scripts/start_mcp.sh

3️⃣ Run AI Automation

python src/ai_autonomous_dev.py

4️⃣ Test System

pytest tests/

Fix uvicorn: command not found

The error indicates that uvicorn is not installed or not in the system path.

✅ Solution 1: Install Uvicorn

pip install uvicorn

✅ Solution 2: Ensure Virtual Environment is Activated

source /Users/umasankars/PycharmProjects/CapstoneMCPserver/venv/bin/activate
pip install -r requirements.txt

✅ Solution 3: Explicitly Call Python for Uvicorn

Modify scripts/start_mcp.sh to:


#!/bin/bash
echo "🚀 Starting MCP Server..."
/Users/umasankars/PycharmProjects/CapstoneMCPserver/venv/bin/python -m uvicorn src.mcp_server:app --reload

Final Steps

After applying the fixes, restart everything:


pip install --upgrade pip setuptools wheel
pip install -r requirements.txt
bash scripts/start_mcp.sh

🚀 Now the system is fully organized and self-learning! 🎯

相关推荐

  • https://suefel.com
  • Latest advice and best practices for custom GPT development.

  • NiKole Maxwell
  • I craft unique cereal names, stories, and ridiculously cute Cereal Baby images.

  • Yusuf Emre Yeşilyurt
  • I find academic articles and books for research and literature reviews.

  • https://maiplestudio.com
  • Find Exhibitors, Speakers and more

  • Carlos Ferrin
  • Encuentra películas y series en plataformas de streaming.

  • Bora Yalcin
  • Evaluator for marketplace product descriptions, checks for relevancy and keyword stuffing.

  • Joshua Armstrong
  • Confidential guide on numerology and astrology, based of GG33 Public information

  • Elijah Ng Shi Yi
  • Advanced software engineer GPT that excels through nailing the basics.

  • Contraband Interactive
  • Emulating Dr. Jordan B. Peterson's style in providing life advice and insights.

  • Emmet Halm
  • Converts Figma frames into front-end code for various mobile frameworks.

  • rustassistant.com
  • Your go-to expert in the Rust ecosystem, specializing in precise code interpretation, up-to-date crate version checking, and in-depth source code analysis. I offer accurate, context-aware insights for all your Rust programming questions.

  • Alexandru Strujac
  • Efficient thumbnail creator for YouTube videos

  • apappascs
  • 发现市场上最全面,最新的MCP服务器集合。该存储库充当集中式枢纽,提供了广泛的开源和专有MCP服务器目录,并提供功能,文档链接和贡献者。

  • Mintplex-Labs
  • 带有内置抹布,AI代理,无代理构建器,MCP兼容性等的多合一桌面和Docker AI应用程序。

  • modelcontextprotocol
  • 模型上下文协议服务器

  • n8n-io
  • 具有本机AI功能的公平代码工作流程自动化平台。将视觉构建与自定义代码,自宿主或云相结合,400+集成。

  • ShrimpingIt
  • MCP系列GPIO Expander的基于Micropython I2C的操作,源自ADAFRUIT_MCP230XX

  • WangRongsheng
  • 🧑‍🚀 llm 资料总结(数据处理、模型训练、模型部署、 o1 模型、mcp 、小语言模型、视觉语言模型)|摘要世界上最好的LLM资源。

  • OffchainLabs
  • 进行以太坊的实施

  • metorial
  • 数百个MCP服务器的容器化版本📡📡

    Reviews

    3 (1)
    Avatar
    user_NfrsdOEC
    2025-04-16

    I've been using the api-to-curl-mcp-server created by S-Umasankar, and it has been a game-changer for converting API calls to CURL commands effortlessly. The repository on GitHub is well-documented, making it easy to integrate and get started. The tool's efficiency and reliability are remarkable, significantly improving my development workflow. Highly recommended for developers looking for seamless API to CURL conversion.