Cover image
Try Now
2025-04-14

Implémentation du serveur de protocole de contexte de modèle (MCP) pour la recherche de vecteurs sémantiques et la gestion de la mémoire à l'aide de TXTAI. Ce serveur fournit une API robuste pour stocker, récupérer et gérer des souvenirs textuels avec des capacités de recherche de base de données vectorielle sémantique. Vous pouvez également utiliser Claude et Cline AI.

3 years

Works with Finder

1

Github Watches

1

Github Forks

4

Github Stars

TxtAI Assistant MCP

A Model Context Protocol (MCP) server implementation for semantic search and memory management using txtai. This server provides a robust API for storing, retrieving, and managing text-based memories with semantic search capabilities.

About txtai

This project is built on top of txtai, an excellent open-source AI-powered search engine created by NeuML. txtai provides:

  • 🔍 All-in-one semantic search solution
  • 🧠 Neural search with transformers
  • 💡 Zero-shot text classification
  • 🔄 Text extraction and embeddings
  • 🌐 Multi-language support
  • 🚀 High performance and scalability

We extend txtai's capabilities by integrating it with the Model Context Protocol (MCP), enabling AI assistants like Claude and Cline to leverage its powerful semantic search capabilities. Special thanks to the txtai team for creating such a powerful and flexible tool.

Features

  • 🔍 Semantic search across stored memories
  • 💾 Persistent storage with file-based backend
  • 🏷️ Tag-based memory organization and retrieval
  • 📊 Memory statistics and health monitoring
  • 🔄 Automatic data persistence
  • 📝 Comprehensive logging
  • 🔒 Configurable CORS settings
  • 🤖 Integration with Claude and Cline AI

Prerequisites

  • Python 3.8 or higher
  • pip (Python package installer)
  • virtualenv (recommended)

Installation

  1. Clone this repository:
git clone https://github.com/yourusername/txtai-assistant-mcp.git
cd txtai-assistant-mcp
  1. Run the start script:
./scripts/start.sh

The script will:

  • Create a virtual environment
  • Install required dependencies
  • Set up necessary directories
  • Create a configuration file from template
  • Start the server

Configuration

The server can be configured using environment variables in the .env file. A template is provided at .env.template:

# Server Configuration
HOST=0.0.0.0
PORT=8000

# CORS Configuration
CORS_ORIGINS=*

# Logging Configuration
LOG_LEVEL=DEBUG

# Memory Configuration
MAX_MEMORIES=0

Integration with Claude and Cline AI

This TxtAI Assistant can be used as an MCP server with Claude and Cline AI to enhance their capabilities with semantic memory and search functionality.

Configuration for Claude

To use this server with Claude, add it to Claude's MCP configuration file (typically located at ~/Library/Application Support/Claude/claude_desktop_config.json on macOS):

{
  "mcpServers": {
    "txtai-assistant": {
      "command": "path/to/txtai-assistant-mcp/scripts/start.sh",
      "env": {}
    }
  }
}

Configuration for Cline

To use with Cline, add the server configuration to Cline's MCP settings file (typically located at ~/Library/Application Support/Code/User/globalStorage/saoudrizwan.claude-dev/settings/cline_mcp_settings.json):

{
  "mcpServers": {
    "txtai-assistant": {
      "command": "path/to/txtai-assistant-mcp/scripts/start.sh",
      "env": {}
    }
  }
}

Available MCP Tools

Once configured, the following tools become available to Claude and Cline:

  1. store_memory: Store new memory content with metadata and tags
{
  "content": "Memory content to store",
  "metadata": {
    "source": "conversation",
    "timestamp": "2023-01-01T00:00:00Z"
  },
  "tags": ["important", "context"],
  "type": "conversation"
}
  1. retrieve_memory: Retrieve memories based on semantic search
{
  "query": "search query",
  "n_results": 5
}
  1. search_by_tag: Search memories by tags
{
  "tags": ["important", "context"]
}
  1. delete_memory: Delete a specific memory by content hash
{
  "content_hash": "hash_value"
}
  1. get_stats: Get database statistics
{}
  1. check_health: Check database and embedding model health
{}

Usage Examples

In Claude or Cline, you can use these tools through the MCP protocol:

# Store a memory
<use_mcp_tool>
<server_name>txtai-assistant</server_name>
<tool_name>store_memory</tool_name>
<arguments>
{
  "content": "Important information to remember",
  "tags": ["important"]
}
</arguments>
</use_mcp_tool>

# Retrieve memories
<use_mcp_tool>
<server_name>txtai-assistant</server_name>
<tool_name>retrieve_memory</tool_name>
<arguments>
{
  "query": "what was the important information?",
  "n_results": 5
}
</arguments>
</use_mcp_tool>

The AI will automatically use these tools to maintain context and retrieve relevant information during conversations.

API Endpoints

Store Memory

POST /store

Store a new memory with optional metadata and tags.

Request Body:

{
    "content": "Memory content to store",
    "metadata": {
        "source": "example",
        "timestamp": "2023-01-01T00:00:00Z"
    },
    "tags": ["example", "memory"],
    "type": "general"
}

Search Memories

POST /search

Search memories using semantic search.

Request Body:

{
    "query": "search query",
    "n_results": 5,
    "similarity_threshold": 0.7
}

Search by Tags

POST /search_tags

Search memories by tags.

Request Body:

{
    "tags": ["example", "memory"]
}

Delete Memory

DELETE /memory/{content_hash}

Delete a specific memory by its content hash.

Get Statistics

GET /stats

Get system statistics including memory counts and tag distribution.

Health Check

GET /health

Check the health status of the server.

Directory Structure

txtai-assistant-mcp/
├── server/
│   ├── main.py           # Main server implementation
│   └── requirements.txt  # Python dependencies
├── scripts/
│   └── start.sh         # Server startup script
├── data/                # Data storage directory
├── logs/                # Log files directory
├── .env.template        # Environment configuration template
└── README.md           # This file

Data Storage

Memories and tags are stored in JSON files in the data directory:

  • memories.json: Contains all stored memories
  • tags.json: Contains the tag index

Logging

Logs are stored in the logs directory. The default log file is server.log.

Development

To contribute to this project:

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes
  4. Submit a pull request

Error Handling

The server implements comprehensive error handling:

  • Invalid requests return appropriate HTTP status codes
  • Errors are logged with stack traces
  • User-friendly error messages are returned in responses

Security Considerations

  • CORS settings are configurable via environment variables
  • File paths are sanitized to prevent directory traversal
  • Input validation is performed on all endpoints

License

This project is licensed under the MIT License - see the LICENSE file for details.

Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

Support

If you encounter any issues or have questions, please file an issue on the GitHub repository.

相关推荐

  • NiKole Maxwell
  • I craft unique cereal names, stories, and ridiculously cute Cereal Baby images.

  • Joshua Armstrong
  • Confidential guide on numerology and astrology, based of GG33 Public information

  • https://suefel.com
  • Latest advice and best practices for custom GPT development.

  • Emmet Halm
  • Converts Figma frames into front-end code for various mobile frameworks.

  • Khalid kalib
  • Write professional emails

  • XLwebDev.com
  • PR Professional: Guiding You to Get Media Placements and Publicity Quickly and Effectively

  • Elijah Ng Shi Yi
  • Advanced software engineer GPT that excels through nailing the basics.

  • Beniyam Berhanu
  • Therapist adept at identifying core issues and offering practical advice with images.

  • apappascs
  • Découvrez la collection la plus complète et la plus à jour de serveurs MCP sur le marché. Ce référentiel sert de centre centralisé, offrant un vaste catalogue de serveurs MCP open-source et propriétaires, avec des fonctionnalités, des liens de documentation et des contributeurs.

  • ShrimpingIt
  • Manipulation basée sur Micropython I2C de l'exposition GPIO de la série MCP, dérivée d'Adafruit_MCP230XX

  • OffchainLabs
  • Aller la mise en œuvre de la preuve de la participation Ethereum

  • huahuayu
  • Une passerelle API unifiée pour intégrer plusieurs API d'explorateur de blockchain de type étherscan avec la prise en charge du protocole de contexte modèle (MCP) pour les assistants d'IA.

  • deemkeen
  • Contrôlez votre MBOT2 avec un combo d'alimentation: MQTT + MCP + LLM

    Reviews

    3 (1)
    Avatar
    user_15tPvB41
    2025-04-16

    I recently started using txtai-assistant-mcp by rmtech1, and I must say it's a game-changer! The seamless integration and user-friendly interface make AI interactions smooth and efficient. Highly recommend checking it out at https://github.com/rmtech1/txtai-assistant-mcp.