Confidential guide on numerology and astrology, based of GG33 Public information

MIP-MCPP
Code avec le papier RA-L'23 - "Programmation en entier mixte pour la planification du chemin de la couverture multi-robot optimale avec heuristique"
3 years
Works with Finder
1
Github Watches
5
Github Forks
26
Github Stars
MIP-MCPP
This repository is the implementation of the MIP, MIP-PRH and MIP-SRH models for the Min-Max Rooted Tree Cover (MMRTC) problem and their corresponding planners for the graph-based multi-robot coverage path planning problem from the following paper:
Jingtao Tang and Hang Ma. "Mixed Integer Programming for Time-Optimal Multi-Robot Coverage Path Planning with Heuristics." IEEE Robotics and Automation Letters (Aug. 2023). [paper], [video], [project]
Please cite this article if you use this code for the multi-robot coverage path planning problem.
Installation
1. Python lib:
pip install -r requirements.txt
2. Gurobi lib:
optional if you don't want to run solver.py for MIP optimization. Pre-run model solutions are provided in directory 'data/solutions'.
Please refer to [Gurobi] for the installation. (they have trial and academic licenses)
Description
1. The MMRTC MIP Solver
The MCPP problem is reduced to the MMRTC problem and then solved with the STC algorithm. Please refer to the paper for more details.
Usage
python solver.py [-h] [--solver_cfg SOLVER_CFG] [--alpha ALPHA] [--beta BETA] [--warm_start WARM_START] istc
- Required:
-
istc
: the instance name stored in directory 'data/instances'.
-
- Optional:
-
--solver_cfg SOLVER_CFG
: path to the Gurobi configuration file. (see 'data/cfgs' for reference) -
alpha ALPHA
: parameter of Parabolic Removal Heuristics (PRH). Will solve the MIP-PRH model if specified. -
beta BETA
: parameter of Subgraph Removal Heuristics (SRH). Will solve the MIP-SRH model if specified. -
--warm_start WARM_START
: type of warm-startup for the model optimization. Use 'RTC' for the original MIP model and 'MST' for MIP-PRH and MIP-SRH.
-
2. The Instance Maker
A simple routine to create random MMRTC instance.
- if map is provided, then a terrain with uniform terrain weight of 1 is generated, encoded by:
- obstacle vertex: black pixel, rgb=(0,0,0)
- free vertex: white pixel, rgb=(1,1,1)
- root vertex: red pixel, rgb=(1,0,0)
- otherwise, an empty terrain with random weights will be generated.
Usage
python instance_maker.py [-h] [--map MAP] name
-
Required:
-
name
: the instance name in the format of '[grid width]x[grid height]-[Characteristics]-k[# of roots]'.- If no map is provided, the generated instance is a
[grid width]
x[grid height]
empty terrain with[# of roots]
subtrees (or robots) and randomized terrain weights.
- If no map is provided, the generated instance is a
-
-
Optional:
-
--map MAP
: path to the map to create the instance.
-
3. The MCPP Planner
The MCPP planners with simulation, including MFC, MSTC$^*$ and MIP (the method in this paper).
Usage:
python planner.py [-h] [--method METHOD] [--istc_sol_name ISTC_SOL_NAME] [--scale SCALE] [--dt DT] [--write WRITE] istc
- Required:
-
istc
: the instance name stored in directory 'data/instances'.
-
- Optional:
-
--method METHOD
: planner type choose from {MFC, MSTC*, MIP}. -
-istc_sol_name ISTC_SOL_NAME
: MIP solution name stored in the directroy 'data/solutions'. (only required when planner type is MIP) -
--scale SCALE
: the canvas scaling factor for visualization. -
--dt DT
: delta time of simulation. -
--write WRITE
: is writing the simulation as MP4. (ffmpeg lib is required)
-
MCPP Simulation Results
- The floor-medium instance using the MMRTC solution from MIP-SRH model
License
MIP-MCPP is released under the GPL version 3. See LICENSE.txt for further details.
相关推荐
Advanced software engineer GPT that excels through nailing the basics.
I find academic articles and books for research and literature reviews.
Embark on a thrilling diplomatic quest across a galaxy on the brink of war. Navigate complex politics and alien cultures to forge peace and avert catastrophe in this immersive interstellar adventure.
Delivers concise Python code and interprets non-English comments
Découvrez la collection la plus complète et la plus à jour de serveurs MCP sur le marché. Ce référentiel sert de centre centralisé, offrant un vaste catalogue de serveurs MCP open-source et propriétaires, avec des fonctionnalités, des liens de documentation et des contributeurs.
Manipulation basée sur Micropython I2C de l'exposition GPIO de la série MCP, dérivée d'Adafruit_MCP230XX
La communauté du curseur et de la planche à voile, recherchez des règles et des MCP
🔥 1Panel fournit une interface Web intuitive et un serveur MCP pour gérer des sites Web, des fichiers, des conteneurs, des bases de données et des LLM sur un serveur Linux.
L'application tout-en-un desktop et Docker AI avec chiffon intégré, agents AI, constructeur d'agent sans code, compatibilité MCP, etc.
Serveurs AWS MCP - Serveurs MCP spécialisés qui apportent les meilleures pratiques AWS directement à votre flux de travail de développement
🧑🚀 全世界最好的 LLM 资料总结 (数据处理、模型训练、模型部署、 O1 模型、 MCP 、小语言模型、视觉语言模型) | Résumé des meilleures ressources LLM du monde.
Serveurs MCP géniaux - une liste organisée de serveurs de protocole de contexte de modèle
Reviews

user_E7Xh7mJp
I have been using MIP-MCPP for a while now, and I must say it's a phenomenal tool created by reso1. It excels in delivering a seamless experience with its robust language support and intuitive interface. The project links and extensive documentation have made integration incredibly easy. Highly recommended for anyone looking to enhance their MCP applications. Check it out at https://github.com/reso1/MIP-MCPP!