Cover image
Try Now
2025-04-14

MCP Hub est un cadre complet pour la construction, la gestion et les serveurs du protocole de contexte du modèle (MCP) de création, de gestion et de déploiement. Il fournit des outils et des configurations pour activer l'intégration et l'exécution transparentes des workflows MCP de bout en bout.

3 years

Works with Finder

1

Github Watches

0

Github Forks

2

Github Stars

MCP Hub Documentation

Overview

MCP Hub is a framework for creating and managing Model Context Protocol (MCP) servers and clients. It leverages the uv tool for fast package installation and configuration management.

Why Use UV?

UV simplifies package management and configuration with blazing-fast commands. Learn a few commands to get started, and you're good to go:

  • Initialize a project:
    uv init
    
  • Sync Python version and dependencies:
    uv sync
    

For more details, visit the UV GitHub repository.

Motivation

To understand the basics of MCP and get started with creating MCP servers, refer to the MCP Quickstart Server Guide.

Getting Started

How to Create a Sample MCP Server

  1. Create a New Project Directory

    uv init XYZ
    cd XYZ
    
  2. Set Up a Virtual Environment

    uv venv
    source .venv/bin/activate
    
  3. Install Dependencies

    uv add "mcp[cli]" httpx
    
  4. Create the Server File

    touch XYZ.py
    

How to Run the MCP Server

To run the server, use the following command:

uv run XYZ.py

Example: Creating a New XYZ Server

Follow the steps outlined above to create and run a new XYZ server. Replace XYZ with your desired project name.

Recent Updates

Notebooks Directory

The notebooks/ directory has been added to the project. It includes configuration files and scripts for setting up and running JupyterHub. Key files include:

  • jupyterhub_config.py: Configuration for JupyterHub.
  • start_jupyterhub.sh: Script to start the JupyterHub server.

CIFAR-10 Dataset Downloader

A new script has been added under ai/computer-vision/09_datasets/ to download the CIFAR-10 dataset using TensorFlow/Keras. To use it, run:

python ai/computer-vision/09_datasets/download_cifar10.py

This script downloads the dataset and prints a confirmation message.

AI Folder

The ai/ folder contains various subdirectories and scripts related to computer vision and artificial intelligence. Below is an overview of its structure and contents:

Subdirectories and Files

01_image_handling

  • basic_manipulations.py: Basic image manipulation techniques.
  • blue_image.png: Sample image for testing.
  • hello_cv.py: A simple script to demonstrate computer vision basics.
  • image_representation.py: Explains image representation in computer vision.
  • read_display_save.py: Script to read, display, and save images.
  • README.md: Documentation for this subdirectory.

02_image_preprocessing

  • augmentation.py: Image augmentation techniques.
  • normalization.py: Image normalization methods.

03_feature_extraction

  • hog_extraction.py: Extracts Histogram of Oriented Gradients (HOG) features.
  • sift_surf_extraction.py: Demonstrates SIFT and SURF feature extraction.

04_basic_ml_concepts

  • hog_svm_classifier.py: Implements a classifier using HOG features and SVM.

05_deep_learning_cnn

  • cnn_architecture.py: Defines a Convolutional Neural Network (CNN) architecture.

06_image_classification

  • train_classifier.py: Script to train an image classifier.

07_object_detection

  • basic_object_detection.py: Demonstrates basic object detection techniques.

08_image_segmentation

  • basic_segmentation.py: Explains basic image segmentation methods.

09_datasets

  • download_cifar10.py: Script to download the CIFAR-10 dataset.

10_utils

  • image_utils.py: Utility functions for image processing.

Additional Files

  • main.py: Entry point for AI-related scripts.
  • pyproject.toml: Configuration file for the project.
  • README.md: Documentation for the ai/ folder.
  • run.sh: Shell script to execute AI-related tasks.
  • uv.lock: Lock file for dependencies.

相关推荐

  • Joshua Armstrong
  • Confidential guide on numerology and astrology, based of GG33 Public information

  • https://suefel.com
  • Latest advice and best practices for custom GPT development.

  • Emmet Halm
  • Converts Figma frames into front-end code for various mobile frameworks.

  • Elijah Ng Shi Yi
  • Advanced software engineer GPT that excels through nailing the basics.

  • https://maiplestudio.com
  • Find Exhibitors, Speakers and more

  • lumpenspace
  • Take an adjectivised noun, and create images making it progressively more adjective!

  • https://appia.in
  • Siri Shortcut Finder – your go-to place for discovering amazing Siri Shortcuts with ease

  • Carlos Ferrin
  • Encuentra películas y series en plataformas de streaming.

  • Yusuf Emre Yeşilyurt
  • I find academic articles and books for research and literature reviews.

  • tomoyoshi hirata
  • Sony α7IIIマニュアルアシスタント

  • apappascs
  • Découvrez la collection la plus complète et la plus à jour de serveurs MCP sur le marché. Ce référentiel sert de centre centralisé, offrant un vaste catalogue de serveurs MCP open-source et propriétaires, avec des fonctionnalités, des liens de documentation et des contributeurs.

  • ShrimpingIt
  • Manipulation basée sur Micropython I2C de l'exposition GPIO de la série MCP, dérivée d'Adafruit_MCP230XX

  • jae-jae
  • MCP Server pour récupérer le contenu de la page Web à l'aide du navigateur sans tête du dramwright.

  • ravitemer
  • Un puissant plugin Neovim pour gérer les serveurs MCP (Protocole de contexte modèle)

  • patruff
  • Pont entre les serveurs Olllama et MCP, permettant aux LLM locaux d'utiliser des outils de protocole de contexte de modèle

  • pontusab
  • La communauté du curseur et de la planche à voile, recherchez des règles et des MCP

  • av
  • Exécutez sans effort LLM Backends, API, Frontends et Services avec une seule commande.

  • WangRongsheng
  • 🧑‍🚀 全世界最好的 LLM 资料总结 (数据处理、模型训练、模型部署、 O1 模型、 MCP 、小语言模型、视觉语言模型) | Résumé des meilleures ressources LLM du monde.

  • Mintplex-Labs
  • L'application tout-en-un desktop et Docker AI avec chiffon intégré, agents AI, constructeur d'agent sans code, compatibilité MCP, etc.

  • modelcontextprotocol
  • Serveurs de protocole de contexte modèle

    Reviews

    3 (1)
    Avatar
    user_xToihejl
    2025-04-17

    As a dedicated user of the mcp-hub by reddy-sh, I am genuinely impressed by its functionality and seamless integration. The comprehensive documentation and user-friendly interface have significantly boosted my productivity. It's a must-have tool for any developer looking to streamline their workflow. Highly recommended!