MCP cover image
qdrant_server_devcontainer_for_rag_mcp logo
Public

qdrant_server_devcontainer_for_rag_mcp

See in Github
2025-04-08

1

Github Watches

0

Github Forks

0

Github Stars

Qdrant DevContainer for File Embeddings

This project provides a development container setup for running Qdrant with file embeddings. It includes everything needed to index and search text documents using vector similarity search.

Prerequisites

  1. Docker Desktop must be running before starting the devcontainer
  2. VS Code with the Remote - Containers extension
  3. Internet connection (for downloading dependencies)

Getting Started

  1. Ensure Docker Desktop is running on your system
  2. Open this folder in VS Code
  3. Click the green "Reopen in Container" button in the bottom right corner
    • Or press F1 and type "Dev Containers: Reopen in Container"

Project Structure

qdrant_server_devcontainer/ ├── .devcontainer/ │ ├── devcontainer.json │ └── Dockerfile ├── requirements.txt ├── ingest.py └── data/ # Place your text files here

Usage

  1. Place your text files in the data/ directory
  2. The container will automatically start Qdrant
  3. After the container is built You should be able to access Qdrant at http://localhost:6333
  4. Run the ingestion script manually from within the container:
    python ingest.py
    

Features

  • Qdrant vector database running in the background
  • Automatic file indexing using sentence-transformers
  • Python environment with all necessary dependencies
  • VS Code Python extension pre-installed

Technical Details

  • Qdrant runs on a dynamically assigned port (check the output panel after container build)
  • Uses all-MiniLM-L6-v2 for text embeddings
  • Creates a collection named "local-docs" with cosine similarity
  • Supports text files (.txt), markdown files (.md), and PDF files (.pdf) in the data directory

Troubleshooting

  1. If the container fails to start:

    • Ensure Docker Desktop is running
    • Check that no other process is using the dynamically assigned port
    • Verify all dependencies are properly installed
  2. If files aren't being indexed:

    • Check that files are in the data/ directory
    • Verify file extensions are supported (currently .txt, .md, .pdf)
    • Ensure files are readable by the container

License

MIT License

TODO

  • handle giant PDFs efficiently,
  • extract text per page using parallel processing,
  • embed and push each chunk as it’s ready,
  • support GPU embedding if torch.cuda.is_available()?
  • add support for epub files

相关推荐

  • https://suefel.com
  • Latest advice and best practices for custom GPT development.

  • Yusuf Emre Yeşilyurt
  • I find academic articles and books for research and literature reviews.

  • https://maiplestudio.com
  • Find Exhibitors, Speakers and more

  • Carlos Ferrin
  • Encuentra películas y series en plataformas de streaming.

  • Joshua Armstrong
  • Confidential guide on numerology and astrology, based of GG33 Public information

  • Contraband Interactive
  • Emulating Dr. Jordan B. Peterson's style in providing life advice and insights.

  • rustassistant.com
  • Your go-to expert in the Rust ecosystem, specializing in precise code interpretation, up-to-date crate version checking, and in-depth source code analysis. I offer accurate, context-aware insights for all your Rust programming questions.

  • Elijah Ng Shi Yi
  • Advanced software engineer GPT that excels through nailing the basics.

  • Emmet Halm
  • Converts Figma frames into front-end code for various mobile frameworks.

  • Alexandru Strujac
  • Efficient thumbnail creator for YouTube videos

  • lumpenspace
  • Take an adjectivised noun, and create images making it progressively more adjective!

  • apappascs
  • 发现市场上最全面,最新的MCP服务器集合。该存储库充当集中式枢纽,提供了广泛的开源和专有MCP服务器目录,并提供功能,文档链接和贡献者。

  • modelcontextprotocol
  • 模型上下文协议服务器

  • Mintplex-Labs
  • 带有内置抹布,AI代理,无代理构建器,MCP兼容性等的多合一桌面和Docker AI应用程序。

  • ShrimpingIt
  • MCP系列GPIO Expander的基于Micropython I2C的操作,源自ADAFRUIT_MCP230XX

  • n8n-io
  • 具有本机AI功能的公平代码工作流程自动化平台。将视觉构建与自定义代码,自宿主或云相结合,400+集成。

  • open-webui
  • 用户友好的AI接口(支持Ollama,OpenAi API,...)

  • WangRongsheng
  • 🧑‍🚀 llm 资料总结(数据处理、模型训练、模型部署、 o1 模型、mcp 、小语言模型、视觉语言模型)|摘要世界上最好的LLM资源。

  • metorial
  • 数百个MCP服务器的容器化版本📡📡

  • ravitemer
  • 一个功能强大的Neovim插件,用于管理MCP(模型上下文协议)服务器

    Reviews

    2 (1)
    Avatar
    user_t7UUJBUH
    2025-04-17

    I've been using the qdrant_server_devcontainer_for_rag_mcp for a while now, and it has significantly improved my development workflow. The setup is seamless, and it allows for rapid prototyping and deployment. The containerization aspect is particularly useful for maintaining consistency across different environments. Kudos to questmapping for this innovative tool! Highly recommended for any MCP enthusiast looking to streamline their projects. Here's the link for more details: https://github.com/questmapping/qdrant_server_devcontainer_for_rag_mcp