MCP cover image
qdrant_server_devcontainer_for_rag_mcp logo
Public

qdrant_server_devcontainer_for_rag_mcp

See in Github
2025-04-08

1

Github Watches

0

Github Forks

0

Github Stars

Qdrant DevContainer for File Embeddings

This project provides a development container setup for running Qdrant with file embeddings. It includes everything needed to index and search text documents using vector similarity search.

Prerequisites

  1. Docker Desktop must be running before starting the devcontainer
  2. VS Code with the Remote - Containers extension
  3. Internet connection (for downloading dependencies)

Getting Started

  1. Ensure Docker Desktop is running on your system
  2. Open this folder in VS Code
  3. Click the green "Reopen in Container" button in the bottom right corner
    • Or press F1 and type "Dev Containers: Reopen in Container"

Project Structure

qdrant_server_devcontainer/ ├── .devcontainer/ │ ├── devcontainer.json │ └── Dockerfile ├── requirements.txt ├── ingest.py └── data/ # Place your text files here

Usage

  1. Place your text files in the data/ directory
  2. The container will automatically start Qdrant
  3. After the container is built You should be able to access Qdrant at http://localhost:6333
  4. Run the ingestion script manually from within the container:
    python ingest.py
    

Features

  • Qdrant vector database running in the background
  • Automatic file indexing using sentence-transformers
  • Python environment with all necessary dependencies
  • VS Code Python extension pre-installed

Technical Details

  • Qdrant runs on a dynamically assigned port (check the output panel after container build)
  • Uses all-MiniLM-L6-v2 for text embeddings
  • Creates a collection named "local-docs" with cosine similarity
  • Supports text files (.txt), markdown files (.md), and PDF files (.pdf) in the data directory

Troubleshooting

  1. If the container fails to start:

    • Ensure Docker Desktop is running
    • Check that no other process is using the dynamically assigned port
    • Verify all dependencies are properly installed
  2. If files aren't being indexed:

    • Check that files are in the data/ directory
    • Verify file extensions are supported (currently .txt, .md, .pdf)
    • Ensure files are readable by the container

License

MIT License

TODO

  • handle giant PDFs efficiently,
  • extract text per page using parallel processing,
  • embed and push each chunk as it’s ready,
  • support GPU embedding if torch.cuda.is_available()?
  • add support for epub files

相关推荐

  • https://suefel.com
  • Latest advice and best practices for custom GPT development.

  • Yusuf Emre Yeşilyurt
  • I find academic articles and books for research and literature reviews.

  • https://maiplestudio.com
  • Find Exhibitors, Speakers and more

  • Carlos Ferrin
  • Encuentra películas y series en plataformas de streaming.

  • Joshua Armstrong
  • Confidential guide on numerology and astrology, based of GG33 Public information

  • Emmet Halm
  • Converts Figma frames into front-end code for various mobile frameworks.

  • Elijah Ng Shi Yi
  • Advanced software engineer GPT that excels through nailing the basics.

  • lumpenspace
  • Take an adjectivised noun, and create images making it progressively more adjective!

  • https://appia.in
  • Siri Shortcut Finder – your go-to place for discovering amazing Siri Shortcuts with ease

  • apappascs
  • Descubra la colección más completa y actualizada de servidores MCP en el mercado. Este repositorio sirve como un centro centralizado, que ofrece un extenso catálogo de servidores MCP de código abierto y propietarios, completos con características, enlaces de documentación y colaboradores.

  • ShrimpingIt
  • Manipulación basada en Micrypthon I2C del expansor GPIO de la serie MCP, derivada de AdaFruit_MCP230xx

  • modelcontextprotocol
  • Servidores de protocolo de contexto modelo

  • jae-jae
  • Servidor MCP para obtener contenido de la página web con el navegador sin cabeza de dramaturgo.

  • Mintplex-Labs
  • La aplicación AI de escritorio todo en uno y Docker con trapo incorporado, agentes de IA, creador de agentes sin código, compatibilidad de MCP y más.

  • ravitemer
  • Un poderoso complemento Neovim para administrar servidores MCP (protocolo de contexto del modelo)

  • patruff
  • Puente entre los servidores Ollama y MCP, lo que permite a LLM locales utilizar herramientas de protocolo de contexto del modelo

  • pontusab
  • La comunidad de cursor y windsurf, encontrar reglas y MCP

  • WangRongsheng
  • 🧑‍🚀 全世界最好的 llM 资料总结(数据处理、模型训练、模型部署、 O1 模型、 MCP 、小语言模型、视觉语言模型) | Resumen de los mejores recursos del mundo.

    Reviews

    2 (1)
    Avatar
    user_t7UUJBUH
    2025-04-17

    I've been using the qdrant_server_devcontainer_for_rag_mcp for a while now, and it has significantly improved my development workflow. The setup is seamless, and it allows for rapid prototyping and deployment. The containerization aspect is particularly useful for maintaining consistency across different environments. Kudos to questmapping for this innovative tool! Highly recommended for any MCP enthusiast looking to streamline their projects. Here's the link for more details: https://github.com/questmapping/qdrant_server_devcontainer_for_rag_mcp