Qdrant_Server_DevContainer_For_Rag_MCP
1
Github Watches
0
Github Forks
0
Github Stars
Qdrant DevContainer for File Embeddings
This project provides a development container setup for running Qdrant with file embeddings. It includes everything needed to index and search text documents using vector similarity search.
Prerequisites
- Docker Desktop must be running before starting the devcontainer
- VS Code with the Remote - Containers extension
- Internet connection (for downloading dependencies)
Getting Started
- Ensure Docker Desktop is running on your system
- Open this folder in VS Code
- Click the green "Reopen in Container" button in the bottom right corner
- Or press
F1and type "Dev Containers: Reopen in Container"
- Or press
Project Structure
qdrant_server_devcontainer/ ├── .devcontainer/ │ ├── devcontainer.json │ └── Dockerfile ├── requirements.txt ├── ingest.py └── data/ # Place your text files here
Usage
- Place your text files in the
data/directory - The container will automatically start Qdrant
- After the container is built You should be able to access Qdrant at
http://localhost:6333 - Run the ingestion script manually from within the container:
python ingest.py
Features
- Qdrant vector database running in the background
- Automatic file indexing using sentence-transformers
- Python environment with all necessary dependencies
- VS Code Python extension pre-installed
Technical Details
- Qdrant runs on a dynamically assigned port (check the output panel after container build)
- Uses
all-MiniLM-L6-v2for text embeddings - Creates a collection named "local-docs" with cosine similarity
- Supports text files (.txt), markdown files (.md), and PDF files (.pdf) in the data directory
Troubleshooting
-
If the container fails to start:
- Ensure Docker Desktop is running
- Check that no other process is using the dynamically assigned port
- Verify all dependencies are properly installed
-
If files aren't being indexed:
- Check that files are in the
data/directory - Verify file extensions are supported (currently .txt, .md, .pdf)
- Ensure files are readable by the container
- Check that files are in the
License
MIT License
TODO
- handle giant PDFs efficiently,
- extract text per page using parallel processing,
- embed and push each chunk as it’s ready,
- support GPU embedding if torch.cuda.is_available()?
- add support for epub files
相关推荐
I find academic articles and books for research and literature reviews.
Confidential guide on numerology and astrology, based of GG33 Public information
Emulating Dr. Jordan B. Peterson's style in providing life advice and insights.
Advanced software engineer GPT that excels through nailing the basics.
Your go-to expert in the Rust ecosystem, specializing in precise code interpretation, up-to-date crate version checking, and in-depth source code analysis. I offer accurate, context-aware insights for all your Rust programming questions.
Take an adjectivised noun, and create images making it progressively more adjective!
Découvrez la collection la plus complète et la plus à jour de serveurs MCP sur le marché. Ce référentiel sert de centre centralisé, offrant un vaste catalogue de serveurs MCP open-source et propriétaires, avec des fonctionnalités, des liens de documentation et des contributeurs.
L'application tout-en-un desktop et Docker AI avec chiffon intégré, agents AI, constructeur d'agent sans code, compatibilité MCP, etc.
Manipulation basée sur Micropython I2C de l'exposition GPIO de la série MCP, dérivée d'Adafruit_MCP230XX
Plateforme d'automatisation de workflow à code équitable avec des capacités d'IA natives. Combinez le bâtiment visuel avec du code personnalisé, de l'auto-hôte ou du cloud, 400+ intégrations.
🧑🚀 全世界最好的 LLM 资料总结 (数据处理、模型训练、模型部署、 O1 模型、 MCP 、小语言模型、视觉语言模型) | Résumé des meilleures ressources LLM du monde.
Une liste organisée des serveurs de protocole de contexte de modèle (MCP)
Reviews
user_t7UUJBUH
I've been using the qdrant_server_devcontainer_for_rag_mcp for a while now, and it has significantly improved my development workflow. The setup is seamless, and it allows for rapid prototyping and deployment. The containerization aspect is particularly useful for maintaining consistency across different environments. Kudos to questmapping for this innovative tool! Highly recommended for any MCP enthusiast looking to streamline their projects. Here's the link for more details: https://github.com/questmapping/qdrant_server_devcontainer_for_rag_mcp