Cover image
Try Now
2025-02-24

3 years

Works with Finder

1

Github Watches

7

Github Forks

66

Github Stars

Open Deep Research MCP Server

An AI-powered research assistant that performs deep, iterative research on any topic. It combines search engines, web scraping, and AI to explore topics in depth and generate comprehensive reports. Available as a Model Context Protocol (MCP) tool or standalone CLI. Look at exampleout.md to see what a report might look like.

Quick Start

  1. Clone and install:
git clone https://github.com/Ozamatash/deep-research
cd deep-research
npm install
  1. Set up environment in .env.local:
# Copy the example environment file
cp .env.example .env.local
  1. Build:
# Build the server
npm run build
  1. Run the cli version:
npm run start "Your research query here"
  1. Test MCP Server with Claude Desktop:
    Follow the guide thats at the bottom of server quickstart to add the server to Claude Desktop:
    https://modelcontextprotocol.io/quickstart/server

Features

  • Performs deep, iterative research by generating targeted search queries
  • Controls research scope with depth (how deep) and breadth (how wide) parameters
  • Evaluates source reliability with detailed scoring (0-1) and reasoning
  • Prioritizes high-reliability sources (≥0.7) and verifies less reliable information
  • Generates follow-up questions to better understand research needs
  • Produces detailed markdown reports with findings, sources, and reliability assessments
  • Available as a Model Context Protocol (MCP) tool for AI agents
  • For now MCP version doesn't ask follow up questions

How It Works

flowchart TB
    subgraph Input
        Q[User Query]
        B[Breadth Parameter]
        D[Depth Parameter]
        FQ[Feedback Questions]
    end

    subgraph Research[Deep Research]
        direction TB
        SQ[Generate SERP Queries]
        SR[Search]
        RE[Source Reliability Evaluation]
        PR[Process Results]
    end

    subgraph Results[Research Output]
        direction TB
        L((Learnings with
        Reliability Scores))
        SM((Source Metadata))
        ND((Next Directions:
        Prior Goals,
        New Questions))
    end

    %% Main Flow
    Q & FQ --> CQ[Combined Query]
    CQ & B & D --> SQ
    SQ --> SR
    SR --> RE
    RE --> PR

    %% Results Flow
    PR --> L
    PR --> SM
    PR --> ND

    %% Depth Decision and Recursion
    L & ND --> DP{depth > 0?}
    DP -->|Yes| SQ
    
    %% Final Output
    DP -->|No| MR[Markdown Report]

    %% Styling
    classDef input fill:#7bed9f,stroke:#2ed573,color:black
    classDef process fill:#70a1ff,stroke:#1e90ff,color:black
    classDef output fill:#ff4757,stroke:#ff6b81,color:black
    classDef results fill:#a8e6cf,stroke:#3b7a57,color:black,width:150px,height:150px

    class Q,B,D,FQ input
    class SQ,SR,RE,PR process
    class MR output
    class L,SM,ND results

Advanced Setup

Using Local Firecrawl (Free Option)

Instead of using the Firecrawl API, you can run a local instance. You can use the official repo or my fork which uses searXNG as the search backend to avoid using a searchapi key:

  1. Set up local Firecrawl:
git clone https://github.com/Ozamatash/localfirecrawl
cd localfirecrawl
# Follow setup in localfirecrawl README
  1. Update .env.local:
FIRECRAWL_BASE_URL="http://localhost:3002"

Optional: Observability

Add observability to track research flows, queries, and results using Langfuse:

# Add to .env.local
LANGFUSE_PUBLIC_KEY="your_langfuse_public_key"
LANGFUSE_SECRET_KEY="your_langfuse_secret_key"

The app works normally without observability if no Langfuse keys are provided.

License

MIT License

相关推荐

  • Joshua Armstrong
  • Confidential guide on numerology and astrology, based of GG33 Public information

  • https://suefel.com
  • Latest advice and best practices for custom GPT development.

  • Emmet Halm
  • Converts Figma frames into front-end code for various mobile frameworks.

  • Elijah Ng Shi Yi
  • Advanced software engineer GPT that excels through nailing the basics.

  • Alexandru Strujac
  • Efficient thumbnail creator for YouTube videos

  • https://maiplestudio.com
  • Find Exhibitors, Speakers and more

  • Yusuf Emre Yeşilyurt
  • I find academic articles and books for research and literature reviews.

  • Carlos Ferrin
  • Encuentra películas y series en plataformas de streaming.

  • https://zenepic.net
  • Embark on a thrilling diplomatic quest across a galaxy on the brink of war. Navigate complex politics and alien cultures to forge peace and avert catastrophe in this immersive interstellar adventure.

  • https://reddgr.com
  • Delivers concise Python code and interprets non-English comments

  • apappascs
  • 发现市场上最全面,最新的MCP服务器集合。该存储库充当集中式枢纽,提供了广泛的开源和专有MCP服务器目录,并提供功能,文档链接和贡献者。

  • ShrimpingIt
  • MCP系列GPIO Expander的基于Micropython I2C的操作,源自ADAFRUIT_MCP230XX

  • pontusab
  • 光标与风浪冲浪社区,查找规则和MCP

  • av
  • 毫不费力地使用一个命令运行LLM后端,API,前端和服务。

  • 1Panel-dev
  • 🔥1Panel提供了直观的Web接口和MCP服务器,用于在Linux服务器上管理网站,文件,容器,数据库和LLMS。

  • Mintplex-Labs
  • 带有内置抹布,AI代理,无代理构建器,MCP兼容性等的多合一桌面和Docker AI应用程序。

  • GeyserMC
  • 与Minecraft客户端/服务器通信的库。

  • awslabs
  • AWS MCP服务器 - 将AWS最佳实践直接带入您的开发工作流程的专门MCP服务器

  • appcypher
  • 很棒的MCP服务器 - 模型上下文协议服务器的策划列表

  • WangRongsheng
  • 🧑‍🚀 llm 资料总结(数据处理、模型训练、模型部署、 o1 模型、mcp 、小语言模型、视觉语言模型)|摘要世界上最好的LLM资源。

    Reviews

    5 (1)
    Avatar
    user_fheT0rW7
    2025-04-17

    As a dedicated user of the deep-research-mcp, I am consistently impressed by its robust capabilities and user-friendly interface. Ozamatash has truly crafted a tool that significantly enhances my research efficiency. The seamless integration and extensive features offered by the deep-research-mcp make it an indispensable asset for any researcher. Highly recommended!